Simultaneous multiwell optogenetic stimulation and microelectrode array recording for disease modeling and toxicological assays

Axion BioSystems, Atlanta, GA

Multiwell MEA Technology

Why use in vitro microelectrode arrays?

Thorough neural experimentation often requires analysis of both single cell activity and network function. Patch clamp techniques provide detailed single-cell analysis but little insight into how that cell behaves in a population.

Microelectrode arrays (MEAs) provide a highthroughput, benchtop method for evaluating the activity of cultured neurons. MEAs collect data simultaneously from many discrete locations in a cultured neural population, delivering information on both activity connectivity. MEAs provide a powerful approach to modeling *in vivo* neural behavior and can be applied to disease modeling, stem cell characterization and phenotyping, neurotoxicity, and safety.

Why use the Maestro?

Axion's Maestro multiwell microelectrode array (MEA) platform enables functional cellular analysis on the benchtop with 768 electrodes across all plate formats.

Neural network activity profiles

Why add stimulation?

While neural cultures are often spontaneously active, stimulation provides control over cellular activity that can be used to:

- Evaluate measures of evoked activity
- Reduce variability across wells
- Create application specific protocols to assess features of network connectivity
- Reduce assay duration by increasing activity levels.

recording of extracellular field potential.

The timing of the spikes contains all of the information required to (clusters of action potential activity).

software.

- Each "tick" mark represents a detected action potential.

stimulation was used to "pace" the network bursts across wells, leading to greater consistency across wells in the baseline and dosed (picrotoxin)

I.P. Clements, D.C. Millard, H. B. Hayes, A. M. Nicolini, C.A. Arrowood, J.D. Ross

MEA / optogenetic assay for disease-in-a-dish modeling

Disease-in-a-Dish Models – Dravet Syndrome

Data courtesy of Dina Simkin and Evangelos Kiskinis, Northwestern University; 689.22 / K13 (Wed. 9-10am)

In vitro measurements of network activity may also be used to study epileptic disorders of genetic origin, such as Dravet syndrome. In an human iPSC-derived model of Dravet syndrome, cultures exhibit an altered network burst phenotype characterized by significantly longer bursts after the cultures have matured.

Patient derived Dravet Syndrome cultures exhibited significantly higher MFR, network burst duration, and spikes per network burst (left), as compared to the control cultures. The distinct network phenotype emerged ~27 days in vitro, with these measurements taken at 32 days in vitro.

Optically-evoked network activity differs between diseased and healthy networks

 The Maestro multiwell MEA platform enables functional characterization of neural cell culture activity and connectivity, and the Lumos optical stimulation system enables precision optogenetic modulation. Both systems are provided in a flexible, easy-to-use, benchtop format.

▲ 20s

- Viral vectors, concentrations, and delivery techniques can be efficiently optimized in parallel, using the Maestro and Lumos systems
- Human-derived iPSC networks were effectively modulated by multiple opsins
- Optogenetic stimulation provides enhanced metrics for evaluating drug response and mutation phenotypes in models of neural disease
- These findings demonstrate the potential of optically-integrated multiwell MEA systems to enable high-throughput drug screening and phenotypic modeling of neurological diseases

689.22 / K13 - Wed (9-10am) Pathogenic aspects of SCN1A haploinsufficiency in human ipsc derived cortical neurons. (Wed 11-12am) 691.12 / N1 - Quantification of seizurogenic activity with multiwell microelectrode array technology for proconvulsant risk assessment and disease-in-a-dish epilepsy models

