IDH mutated tumors promote epileptogenesis via D-2-HG dependent mTOR hyperactivation

Armin Mortazavi, BS; Islam Fayed, MD; Muzna Bachani, BS; Alex Ksendzovskiy, MD, PhD; Dragan Maric, PhD; Tyrone Dowdy, PhD; Mioara Larion, PhD; Chun Zhang, Yang, PhD; Kareem A. Zaghoul, MD, PhD;

Introduction
Epileptic seizures in patients with low-grade, isocitrate dehydrogenase (IDH) mutated gliomas reach 90%, a major source of morbidity for these patients. Albeit there are multiple features that contribute to tumor related epileptogenesis, IDH mutations are determined to be an independent factor, although the pathogenesis remains poorly understood. We demonstrate IDH-mutated tumors promote epileptogenesis through D-2-hydroxyglutarate (D-2-HG) dependent mTOR hyperactivation and metabolic reprogramming.

Methods
Human epileptic and nonepileptic cortex were identified via subdural electrodes in patients with IDH-mutated gliomas (n=5). An in vitro rat cortical neuronal model on microelectrode arrays were utilized to investigate the role of D-2-HG on neuronal excitability. mTOR and lysine demethylase (KDM) modulators were applied to elucidate the epileptogenic mechanism. Tetrodotoxin was utilized to evaluate the contribution of neuronal activity to mTOR signaling and metabolism. mTOR signaling was evaluated through western blot analysis and multiplex immunofluorescence. Metabolic function was analyzed via Seahorse assays and metabolomic analysis.

Epileptic cortex has increased P-S6 expressions in neurons

A) Diagram demonstrating identification of epileptic cortex in the setting of IDH-mutated tumor. B) Multiplex immunofluorescence staining of Dapi, GFAP (astrocyte marker), NeuN (neuronal marker), and P-S6 (marker of mTOR activation) demonstrating increased mTOR activity in neurons within epileptic cortex compared to nonepileptic cortex.

IDH mutated tumors promote epileptogenesis via D-2-HG

A) Schematic of transwell model allowing communication between glioma cell line (IDH WT or R332H) and cortical rat neurons cultured on a microelectrode array (MEA). B) Thirty second raster plots (bottom) and spike histograms (top) of spiking activity in eight electrode channels in a single well with cortical rat neurons. IDH-R332H(right) induced greater number of bursts (blue bars) compared to IDHWT(n=10, mean ± SEM, **** p<0.0001, paired t-test). C) Normalized burst frequency across 10 biological replicates demonstrating increased bursting activity of neurons interacting with IDH-R332H compared to IDHWT(n=10, mean ± SEM, *** p<0.001, paired t-test). D) D-2-HG induced greater bursting activity compared to control(n=4, mean ± SEM, *** p<0.001, paired t-test).

mTOR inhibition corrects epileptogenic activity

A) Thirty second raster plot and spike histogram of spiking activity of control, D-2-HG, and D-2-HG + Rapamycin treated neurons. D-2-HG + Rapamycin treated neurons correct bursting activity similar to control levels. B) Rapamycin, mTOR inhibitor, corrects bursting activity of D-2-HG treated neurons to control levels (n=3, mean ± SEM, *p<0.05, paired t-test).

KDM inhibition upregulates mTOR signaling, resulting in neuronal hyperactivity that can be corrected with mTOR inhibition

A) Thirty second raster plot and spike histogram of spiking activity of control, PFI-90, and succinate treated neurons. PFI-90 and succinate treated neurons increase bursting activity, which can be corrected with rapamycin to control levels.(n=4, mean ± SEM, *** p<0.001, paired t-test).

Conclusions:
• IDH mutated tumors promote epileptogenesis via D-2-HG
• D-2-HG upregulates mTOR signaling via KDM inhibition, which promotes metabolic reprogramming and neuronal hyperactivity
• mTOR inhibition corrects neuronal hyperactivity and metabolic reprogramming