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Summary  14 

The complex 16p11.2 Deletion Syndrome (16pdel) is accompanied by neurological disorders, including 15 

epilepsy, autism spectrum disorder and intellectual disability. We demonstrated that 16pdel iPSC differentiated 16 

neurons from affected people show augmented local field potential activity and altered ceramide-related lipid 17 

species relative to unaffected. FAM57B, a poorly characterized gene in the 16p11.2 interval, has emerged as a 18 

candidate tied to symptomatology. We found that FAM57B modulates ceramide synthase (CerS) activity, but is 19 

not a CerS per se. In FAM57B mutant human neuronal cells and zebrafish brain, composition and levels of 20 

sphingolipids and glycerolipids associated with cellular membranes are disrupted. Consistently, we observed 21 

aberrant plasma membrane architecture and synaptic protein mislocalization, which were accompanied by 22 

depressed brain and behavioral activity. Together, these results suggest that haploinsufficiency of FAM57B 23 

contributes to changes in neuronal activity and function in 16pdel Syndrome, through a crucial role for the gene 24 

in lipid metabolism. 25 

 26 

Introduction 27 

16p11.2 Deletion (16pdel) Syndrome, a severe and prevalent neurodevelopmental disorder, is a copy 28 

number variant with deletion of ~600 kb from chromosome 16, encompassing 25 core protein-coding genes. 29 

This haploinsufficiency syndrome is estimated to affect ~1 in 2500 worldwide and is tightly associated with 30 

autism spectrum disorder (ASD), language and intellectual disability, seizures, attention-deficit/hyperactivity 31 

disorder, macrocephaly, hypotonia and obesity (D'Angelo et al., 2016, Hanson et al., 2015, Zufferey et al., 32 

2012, Egolf et al., 2019, Maillard et al., 2015). Strong indications of synaptic defects are associated with 16pdel 33 

symptoms, particularly epilepsy (Fetit et al., 2020, Kleinendorst et al., 2020) and ASD (Fetit et al., 2020, Kim et 34 

al., 2020, Maillard et al., 2015, Ouellette et al., 2020, Sebat et al., 2007, Pinto et al., 2010, Zufferey et al., 35 

2012), as well as links to metabolic defects (Hoytema van Konijnenburg et al., 2020).  36 
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Previously, analysis in the zebrafish model suggested that FAM57B is a pivotal hub gene in the 37 

16p11.2 interval, that encodes a protein proposed to be a ceramide synthase (Yamashita-Sugahara et al., 38 

2013). Using a pairwise partial loss of function screen for zebrafish embryonic brain morphology, we found that 39 

fam57b interacted with numerous other 16p11.2 interval genes, suggesting haploinsufficiency of FAM57B is 40 

critical in 16pdel Syndrome etiology (McCammon et al., 2017). FAM57B (family with sequence similarity 57, 41 

member B) is a Tram-Lag-CLN8 (TLC) family member, containing a domain of roughly 200 amino acids found 42 

in several other proteins, including ceramide synthases (CerS, the Lag of TLC) (Pewzner-Jung et al., 2006). 43 

Ceramides are sphingolipids (SLs) which are key membrane components and also act as signaling molecules 44 

to modulate proliferation, apoptosis, inflammation, cell cycle arrest and ER stress (Grosch et al., 2012). In 45 

humans, mutations in some of the 6 known CerS are associated with autism, epilepsy and intellectual disability 46 

(Vanni et al., 2014, Egawa et al., 2015, Ranta et al., 1999). In this study, to further assess the predicted 47 

connection with 16pdel Syndrome, we examined FAM57B function through a multidisciplinary approach, 48 

across human cells and the zebrafish system.  49 

  50 

Results 51 

Augmented network activity in 16pdel neuron cultures 52 

Based on previous data, we hypothesized that 16pdel neurons would show an altered lipid profile due 53 

to contributions of FAM57B and possibly other 16pdel genes with predicted roles in metabolism (McCammon 54 

et al., 2017). To test this, we prepared neurons from 16pdel carrier induced-pluripotent stem cells (iPSC), part 55 

of the Simons VIP Consortium, and unaffected control iPSC in culture (Simons Vip, 2012) (Supp Table 1). 56 

Neural progenitor cells were differentiated into cortical neurons, since the cortex has consistently shown 57 

anatomical differences in 16pdel affected individuals (Martin-Brevet et al., 2018, Maillard et al., 2015, Hinkley 58 

et al., 2019, Lin et al., 2015, Qureshi et al., 2014, Blackmon et al., 2018). After one month in culture, 59 

immunocytochemistry (ICC) indicated mature neurons by presence of vesicular glutamate 1 and 2 receptors 60 

(VGlut1/2) (Supp Figs. 1a,b), the synaptic markers PSD95 (Supp Fig. 1b) and Synaptotagmin-1 (Syt1). 61 

Cultures of control and 16pdel (proband) differentiated neurons showed similar percentages of mature neurons 62 

by these criteria. Quantitative analysis was performed to determine equivalent maturation between control and 63 

16pdel differentiated neurons. Production of synaptic proteins was measured by colocalization analysis, 64 

indicating neuronal somas that were Synaptotagmin-1 positive additionally colocalized with PSD-95 (Supp 65 

Table 2).  66 

To further characterize these neurons, we probed network electrical activity by multi-electrode array 67 

(MEA). Spontaneous activity of differentiated neurons was measured over thirty minutes; first in culture media, 68 

followed by physiological solution and last in high potassium chloride solution. Comparing grouped genotypes, 69 

we recorded an increased frequency of Local Field Potentials (LFPs) in 16pdel proband neuron cultures 70 

relative to controls, indicating 16pdel neurons display heightened spontaneous and evoked activity compared 71 

to unaffected control (Fig. 1a). Examining individual patient cell lines, we observed relatively similar MEA 72 
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activity in controls (black), and increased electrical activity in 16pdel neuron cultures (grey) (Supp Fig. 2a). 73 

Interestingly, female 16pdel neuron cultures showed statistically increased LFP frequency compared to male 74 

16pdel neuron cultures when measured in media and High KCl solution (Fig. 1b). Sex differences were also 75 

observed in LFP firing and bursting properties, with increased burst frequency of female 16pdel neurons 76 

compared to male in media (Fig. 1c). While behavioral deficits have been widely observed among male mouse 77 

16pdel models, a recent report found stress-related sex differences in a female 16p11.2 deletion mouse model.  78 

Thus, Giovanniello et al. discovered an increase in activity in central amygdala neurons projecting to the 79 

globus pallidus in female, but not male, 16pdel model mice (Giovanniello, 2021). Our data consistently suggest 80 

sex-specific differences between activity of 16pdel and control neurons. These findings expand previous 81 

observations that demonstrated larger cell size and deficits in synaptic density in 16pdel neurons compared to 82 

control (Deshpande et al., 2017). 83 

 84 

Significant lipid class and individual species changes indicates complexity of 16pdel Syndrome.  85 

 Using differentiated 16pdel and control neurons, we compared their lipid cohorts using untargeted 86 

lipidomics (Table S1 - iPSC Neuron Lipidomics). Consistent with predictions, many significant changes were 87 

observed in total lipid classes between 16pdel and control neurons (Fig. 2a). Levels of SLs (ceramide (Cer) 88 

and sphingomyelin (SM)) and glycerolipids (GL) (lysophosphatidylethanolamine (LPE), 89 

phosphatidylethanolamine (PE), monoacylglycerol (MG)) were significantly decreased, while GL (triacylglycerol 90 

(TG)) levels significantly increased. Analyzing lipid composition, we found similar levels of unsaturated and 91 

saturated species between 16pdel and control neurons, but differences in saturation of acyl carnitine (AcCa) 92 

(unsaturated control 33.78% vs 16pdel 55.16%, and saturated control 66.22% and 16pdel 44.84%) and TG 93 

(unsaturated control 71.15% vs 16pdel 80.28%, and saturated control 28.85% and 16pdel 19.72%) (Fig. 2b). 94 

Polyunsaturated fatty acids (PUFAs) are important in the brain, where they are essential for signaling and 95 

membrane structure (Bazinet and Laye, 2014). Chain length analysis indicated large differences in 96 

lysophosphatidylglycerol (LPG) (long chain control 85.76% vs 16pdel 75.55%) and phosphatidylglycerol (PG) 97 

(long chain control 71.78% vs 16pdel 51.88%). While having a similar ratio of long and very long chain PE 98 

species (Fig. 2b), analysis of individual lipid species demonstrated significantly decreased levels of several 99 

PE(18:22) species in 16pdel neurons relative to control (Fig. 2c). Additionally, decreased Cer(18) species were 100 

observed in 16pdel (Fig. 2d). Comparing MG and TG, MG(18:0) decreased while many TG(18:1,18:2,18:3) 101 

increased (Fig. 2e,f). Together, this analysis identifies differences in metabolism of ceramides and GLs in 102 

16pdel neurons that are critical for function of the ER, mitochondria and plasma membrane (Flis and Daum, 103 

2013). The shift in saturation and tail length of GLs between 16pdel and control neurons suggests a 104 

dysfunctional neuronal membrane.  105 

 106 

FAM57B functions as a ceramide synthase modulator 107 
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We considered that the extensive lipid differences between 16pdel and control neurons may partly 108 

result from FAM57B activity. The function of this protein is not clear, although a single report suggests that 109 

FAM57B has ceramide synthase activity (Yamashita-Sugahara et al., 2013). However, sequence analysis 110 

indicates that while FAM57B is part of the TLC protein family, including ceramide synthases (CerS), FAM57B 111 

has little sequence similarity to CerS, even in the TLC domain (Supp Fig. 3). To assess whether FAM57B is a 112 

bone fide CerS, it was expressed in CerS2-/- (KO) HEK293T cells, which lack endogenous CerS2 activity 113 

(Tidhar et al., 2012) (Fig. 3a). No CerS2 activity was detected in CerS2 KO cells upon transfection of FAM57B 114 

alone. However, co-transfection of FAM57B with CerS2 resulted in a significant increase in CerS2 activity 115 

compared to transfection of CerS2 alone (Fig. 3a), suggesting that FAM57B might modulate CerS2 activity. 116 

There are six CerS isoforms in mammals, where each uses a restricted subset of acyl CoAs of defined chain 117 

length for ceramide synthesis(Levy and Futerman, 2010). To assess whether FAM57B can modulate other 118 

members of the mammalian CerS family; we expressed CerS5 and CerS6 with or without co-transfection of 119 

FAM57B in wildtype HEK293T cells. Upon co-transfection of CerS2 with FAM57B in wildtype HEK293T cells, 120 

levels of CerS2 activity and expression were significantly increased compared to CerS2 alone (Fig. 3b). While 121 

co-transfection of FAM57B with CerS5 did not alter expression nor activity of this CerS (Fig. 3c), an opposite 122 

trend was seen upon co-transfection of FAM57B with CerS6, whose activity decreased upon co-transfection 123 

with FAM57B (Fig. 3c). These results suggest that FAM57B affect protein levels and activity of certain CerS 124 

isoforms, and may do so by an indirect mechanism, dependent on interaction of the two proteins. This 125 

hypothesis was confirmed by immunoprecipitation, in which Flag-tagged FAM57B was able to interact with all 126 

three HA-tagged CerS isoforms (Fig. 3d). These data newly implicate FAM57B as a modulator of CerS, but 127 

refute a previous report that this protein functions as a CerS (Yamashita-Sugahara et al., 2013).  128 

 129 

FAM57B modulates lipid cohorts and synaptic proteins in human cells 130 

The intriguing functional differences between 16pdel and control neurons raises the question of 131 

whether FAM57B haploinsufficiency contributes to these differences. To address this, we used the human 132 

neuroblastoma line SH-SY5Y to create knockout (FAM57B KO) and FAM57B heterozygote (FAM57B HET) 133 

lines, using CRISPR-Cas9 editing. SH-SY5Y cells have proven useful for studying neuronal properties and 134 

function (Kovalevich J, 2013). After confirmation of CRISPR induced genome editing by next generation 135 

sequencing, FAM57B protein depletion was confirmed by western analysis (Supp Fig. 4). For our studies, SH-136 

SY5Y cells were differentiated into neurons after incubation in media containing retinoic acid. Overall, total lipid 137 

classes showed significant differences between FAM57B KO and WT (wildtype), specifically, increased ChE 138 

and MG (Fig. 4a, Table S2 - SH-SY5Y Lipidomics). Comparing FAM57B HET to WT, we observed increased 139 

LPC (Fig. 4b). Additionally, relative to FAM57B HET, we found HexCer and PG significantly decreased while 140 

ChE increased in FAM57B KO cells (Fig. 4c).  141 

Notably, lipid class differences observed between FAM57B KO, FAM57B HET and WT were similarly 142 

altered in 16pdel patient neurons compared to controls (Fig. 2a). This, in both FAM57B KO and FAM57B HET 143 

Jo
urn

al 
Pre-

pro
of



 

 5 

relative to WT, we observed increased abundance of PE(18:0,18:1,22:4,22:5) (Fig. 4d), Cer(d18:1) (Fig. 4e), 144 

MG(18:0) (Fig. 4f), and with decreased abundance of TG(16:0,16:1,18:0,18:1,18:2,22:6) (Fig. 4g). These 145 

differences are similar to those seen in 16pdel relative to control neurons (Fig. 2c-f). In FAM57B KO relative to 146 

WT, there was increased abundance of MG and decreased abundance TG (Fig. 4f,g), as for 16pdel neurons 147 

compared to control (Fig. 2a,e,f). The alterations in lipid cohorts between FAM57B KO and FAM57B HET 148 

human neurons is similar to lipid changes in 16pdel neurons compared to control, and consistent with a role for 149 

FAM57B in dosage-sensitive lipid regulation. The similarities in lipid cohort alterations between FAM57B KO 150 

compared to FAM57B HET in SH-SY5Y human neurons and 16pdel neurons, is consistent with a role for 151 

FAM57B in dosage-sensitive, lipid regulation, including tight regulation of HexCer (Fig. 4c).  152 

To understand the consequence of FAM57B loss of function on neuronal maturation and function, we 153 

probed synaptic composition. Synaptosomes, comprising the pre- and postsynaptic membranes and 154 

postsynaptic density, were isolated from unfixed cells and processed by MS/MS (Table S3 - SH-SY5Y 155 

Synaptosome MSMS). Synaptosomes from FAM57B KO cells showed significantly decreased abundance of 156 

over 100 proteins relative to WT (Fig. 5a). In contrast, FAM57B HET showed no statistically significant 157 

changes in synaptosome protein composition relative to WT (Fig. 5b), with the exception of Dopamine Beta-158 

Hydroxylase (DBH). Among the top 20 significantly decreased proteins in the FAM57B KO synaptosomes were 159 

those associated with protein trafficking, localization and stabilization (Fig. 5c,d). Additionally, we observed an 160 

overall decrease in levels of hallmark synaptic proteins in FAM57B KO compared to FAM57B HET or WT (Fig. 161 

5e). These decreases included α-internexin INA, small GTPase vesicle recycling RAB11B, SNARE protein 162 

syntaxin STXBP1 and scaffolding protein YWHAZ. INA is a neurofilament subunit protein important for 163 

neuronal cytoskeletal assembly and synaptogenesis localized to the post-synaptic terminal (Yuan and Nixon, 164 

2016).  165 

Separately, synaptosomes were isolated from differentiated SH-SY5Y cells and processed for lipidomic 166 

analysis (Table S4 - SH-SY5Y Synaptosome Lipidomics). Comparing lipids localized to the pre- and post-167 

synaptic terminals between FAM57B KO to WT neurons, significant changes in lipid abundances were 168 

observed, notably in hexosylceramide (HexCer) and monoacylglycerol (MG) (Fig. 5f). Relative to WT, Hex2Cer 169 

and MG abundances increased, while Hex1Cer and phosphatidic acid (PA) abundances decreased. No 170 

statistically significant changes in lipid group abundances were observed between FAM57B HET relative to WT 171 

or FAM57B KO. These results suggest altered lipid composition, due to loss of FAM57B function at developing 172 

synapses impacts localization and/or trafficking of synaptic proteins in FAM57B mutant neurons. Together, the 173 

data indicate that in human neurons mutant or heterozygous for FAM57B, there are significant changes in lipid 174 

composition and regional synaptic protein abundance. The data are consistent with the suggestion that a 175 

deficit in FAM57B function partly contributes to 16pdel neuronal anomalies relative to control. The smaller 176 

changes observed in FAM57B HET relative to FAM57B KO suggests that other 16pdel genes contribute to 177 

phenotypes in the haploinsufficient syndrome. 178 

 179 
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FAM57B is essential for Sphingolipid (SL) and Glycerolipid (GL) homeostasis in the developing brain. 180 

16pdel alters brain structure and function, including neuroanatomical abnormalities and increased risk 181 

of psychiatric and other brain disorders (Niarchou et al., 2019, Owen et al., 2018). To understand how FAM57B 182 

contributes to brain development, we analyzed zebrafish, Danio rerio, a powerful system for analysis of neural 183 

development and neurodevelopmental disorders (Kalueff et al., 2014, Stewart et al., 2014, Xi et al., 2011, 184 

McCammon and Sive, 2015). The zebrafish genome includes two copies of the fam57b gene, fam57ba and 185 

fam57bb. We used CRISPR to build double (null) mutants, fam57ba-/-;fam57bb-/- (fam57b mut), and 186 

heterozygotes fam57b+/-;fam57bb+/- (fam57b het), to assess dosage effects of FAM57B.  187 

To determine whether fam57b regulates lipid metabolites, we performed untargeted lipid profiling on 188 

fam57b mut and fam57b het zebrafish brain tissue at 7 days post-fertilization (7 dpf), an optimal timepoint for 189 

molecular and behavioral studies of a developing yet complex brain (Table S5 - Zebrafish Larvae Brain 190 

Lipidomics) (Tomasello and Sive, 2020). Striking differences in SL and GL lipid abundances were present in 191 

fam57b mut and fam57b het compared to wildtype (AB) zebrafish brain (Fig. 6a,b). By lipid class, there was a 192 

significant increase in Cer, LPE, MG and SM along with phosphatidylinositol (PI) and cardiolipin (CL) and 193 

decreased PS in fam57b mut compared to AB (Fig. 6a). A similar trend to fam57b mut, with increased 194 

hexosylceramide (HexCer) and decreased PS lipid classes, were defined in fam57b het brains compared to AB 195 

control. An overlap in lipid differences were observed between fam57b mut brains and FAM57B KO human 196 

neurons, with increased abundance of MG class, and Cer(d18:1) and MG(18:0) species (Figs. 6a, 4a, 6d,e, 197 

4d,e). Many PE species similarly increased, PE(18:0,18:1,20:4), comparing fam57b mut and FAM57B KO to 198 

controls. An important finding across all systems compared, including 16pdel syndrome patient neurons, 199 

heterozygous and mutant FAM57B cells and larvae brains, is a change in ether-linked PE (Figs. 2c, 4d, 6c,g). 200 

Ether GLs differ in phase-transition temperature from gel to liquid crystalline and from lamellar to hexagonal 201 

phases, and are proposed to regulate properties of neuronal membranes (Paltauf, 1994, Lohner, 1996). In 202 

addition to PE, ceramides were altered in fam57b mut and fam57b het brain tissue compared to AB (Fig. 203 

4d,h). Lipidomics resolved predominantly Cer(d18:1) species in zebrafish brains, which agrees with previously 204 

published ceramide composition at 7 dpf (Zhang et al., 2019). These findings suggest a key role for Fam57b in 205 

SL and GL regulation during brain development.  206 

These data demonstrate that fam57b is crucial for regulation of SL and GL classes in the larval 207 

zebrafish brain, and that there is a gene dosage-dependent effect. The data in zebrafish brain are quite similar 208 

to changes seen in human neurons after FAM57B knockout (Fig. 4). These changes affect comparable lipid 209 

groups to those altered in 16pdel neurons relative to control, although they are not the same. For example, 210 

LPE significantly decreased in the 16pdel neurons (Fig. 2a), while the class remained unchanged or 211 

significantly increased in the fam57b het and null SH-SY5Y cells (Fig. 4a-c) and zebrafish brain (Fig. 6a,b), 212 

suggesting additional genes regulate 16pdel lipid metabolites or that these result from other differences 213 

between the tissue being compared.  214 

 215 
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Changes in plasma membrane and associated proteins in fam57b mut and fam57b het brains 216 

Ceramide, hexosylceramide and GL species are integral to membrane composition, are differentially 217 

distributed across inner and outer leaflets of the plasma membrane and contribute to lipid rafts (Kraft, 2016). 218 

Given the changes in these lipids observed in fam57b mut brains, we predicted that plasma membrane 219 

structure would also be altered. To assess lipid raft organization, fluorophore-conjugated Cholera Toxin subunit 220 

B (CT-B), which binds ganglioside GM1 found in lipid rafts (Fishman et al., 1978), was injected into the 221 

hindbrain ventricle of fam57b mut and AB zebrafish embryos at 24 hours post fertilization (hpf), when ventricles 222 

are accessible for injection (Worstell et al., 2016) (Fig. 7a). Embryos fixed after 1-hour incubation 223 

demonstrated a significant increase in punctate GM1 labeling in neural progenitor cells of fam57b mut brains 224 

compared to AB (Fig. 7b). To asses changes in glycerophospholipid species in plasma membranes, we 225 

stained with duramycin, a label for membrane PE (Marconescu and Thorpe, 2008). Mutant progenitors showed 226 

statistically increased punctate PE staining, indicating altered PE localization that could impact membrane 227 

architecture (Fig. 7c). The duramycin puncta may indicate exosomes or extracellular vesicles containing PE 228 

(Beer et al., 2018). At 24 hpf, we did not observe changes in cell proliferation or cell death between fam57b 229 

mut and AB (Supp. Fig 5). The data suggest that there is alteration in the plasma membrane of fam57b mut 230 

brains relative to AB. 231 

The changes in membranes of neural progenitor cells suggested that membrane protein localization 232 

may also be altered. We therefore examined localization of membrane by biotinylation analysis. Freshly 233 

dissected larval brains from fam57b mut or AB at 7 dpf were incubated with membrane impermeable biotin. 234 

Surface proteins were affinity-purified and quantified by MS/MS (Fig. 7d, Table S6 - Zebrafish Larvae Brain 235 

Biotinylation MSMS). MS/MS analysis indicated that membrane-associated protein cohorts were similar 236 

between fam57b mut and AB brains (Fig. 7e), however, a small group of proteins showed altered abundance. 237 

In fam57b mut brains, the protein whose levels most significantly decreased (2-fold) relative to AB was 238 

Synaptotagmin-1a (Syt1) (Fig. 7e). Syt1a, homologous to human SYT1, is a vesicle membrane protein that 239 

acts as a calcium sensor and regulates synaptic and endocrine vesicle exocytosis (Fernandez et al., 2001, 240 

Sorensen et al., 2003, Xu et al., 2007, Gustavsson and Han, 2009, Schonn et al., 2008). Syt1 protein domains 241 

interact with the lipid bilayer, including GL PS that are altered in fam57b mut and fam57b het (Fig. 5a,b). 242 

Mammalian Syt1 can modify PS, and is able to alter curvature strain on the membrane (Lai et al., 2011).  243 

To investigate the decreased membrane abundance of Syt1 in the biotinylation assay, we performed 244 

immunostaining on 7 dpf larvae brains (Fig. 7f). Whole larval brains were cleared and tertiary structure was 245 

protected using SHIELD protocols. Slice imaging of dorsal brain view showed that Syt1 protein was largely 246 

confined to projections of neurons throughout the AB brain, both GABAergic (GAD65/67) and non-GABAergic, 247 

while fam57b mut brains showed ectopic expression throughout the brain (Fig. 7f). By western blot, we found 248 

no change in total brain Syt1 between fam57b mut and AB, suggesting that immunostaining demonstrates 249 

Syt1a mislocalization (Fig. 7g, Supp Fig. 6). Imaging also revealed anatomical changes in the larval fam57b 250 

mut brain, including tectum and corpus cerebelli (Fig. 7f).  251 
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Together, these results indicate that in the brain, relative to wildtype, fam57b mut animals show 252 

changes in lipids, membrane structure and membrane protein association, including the synaptic regulator 253 

Syt1 and others functioning at synapses. The data indicate that fam57b is required for membrane structure and 254 

neuronal architecture.   255 

 256 

Pre- and post-synaptic proteins depleted after loss of FAM57B 257 

To examine the implications of Syt1 mis-localization on synaptic composition, we isolated 258 

synaptosomes from freshly dissected and unfixed brains of fam57b mut or AB larvae (Table S7 - Zebrafish 259 

Larvae Brain Synaptosome MSMS). Proteomic profiling indicated a group of proteins whose representation 260 

significantly increased, and another larger group whose representation significantly decreased in fam57b mut 261 

compared to AB (Fig. 7h). Interestingly, we observed a decrease of the Synaptotagmin family member Syt2a-262 

like protein, similar to human SYT2, with analogous function to SYT1. Gene ontology (GO-Slim and Panther 263 

Protein Class ontology) defined synaptic protein groups found only in the decreased synaptosome protein 264 

group (Fig. 7i, 7j). Annotations in the decreased group included synapse and synapse part components, 265 

cytoskeletal and membrane traffic proteins, biological adhesion, development and signaling, and numerous 266 

implicated pathways including synaptic vesicle trafficking. These results indicate that synaptic protein levels 267 

were significantly altered in synaptosomes from fam57b mut larval brain synapses relative to AB.  268 

We separately examined levels of synaptotagmin family members in brain synaptosome profiles and 269 

found decreased Syt1 and Syt2a protein levels in fam57b mut compared to AB synaptosomes (Fig. 7k). This 270 

interesting association between FAM57B regulation and Synaptotagmin expression (Fig. 7e,f,h) led us to 271 

analyze further human SH-SY5Y isolated synaptosomes. We found a significant decrease in elongated SYT1 272 

(ESYT1) in FAM57B KO compared to FAM57B HET and WT (Fig. 7l), a calcium activated synaptic protein 273 

found to bind GLs (Yu et al., 2016). We then characterized hallmark proteins that function at the synapse from 274 

brain synaptosomes, including synaptic vesicle fusion and tethering proteins. Bayés et al. previously examined 275 

complexity of the adult zebrafish synapse proteome relative to adult mouse synapse proteome (Bayes et al., 276 

2017). As expected, not all synaptic proteins were detected at this immature stage of zebrafish development 277 

compared to the adult brain. Enrichment of synaptic vesicle proteins including Syntaxins, Slc neurotransmitter 278 

transporters, SNAPs, Stx/Vps, Synaptotagmins and membrane budding proteins including Dynamins and Rabs 279 

verify synaptosome isolation and give new data regarding neuronal maturation in the zebrafish larval brain 280 

(Fig. 7j). Comparison of synaptic protein profiles between genotypes demonstrated decreased vesicle fusion 281 

and transport protein Nsfa, ligand-gated ion channel Si:ch211-251b21.1, and SNARE complex proteins Snphb, 282 

Stx1b, Stxbp1a and Vamp3 (Fig. 7j). Together, these data show that synaptic proteins essential for vesicle 283 

docking, exo- and endocytosis, including synaptotagmin family members, are diminished in synaptosomes 284 

isolated from fam57b mut brains relative to AB, suggesting Fam57b is essential for synapse integrity.  285 

 286 

Depressed spontaneous electrical activity and response to stimuli in fam57b mutants 287 
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To understand how changes in fam57b gene dosage impact neuronal activity, we tested brain activity 288 

by electrophysiological analysis. We previously described a noninvasive electrophysiology technique that can 289 

be used in live larvae to measure spontaneous activity in the brain and spinal cord (Tomasello and Sive, 2020). 290 

Using a multielectrode array (MEA), we measured local field potential (LFP) parameters and relative 291 

coordinated (network) activity in the brain of 7 dpf larvae (Figs. 8a-c). Larva were individually immersed in 292 

precooled 1.5% low-melt agarose in E3 solution and mounted in a 64-electrode containing well. We measured 293 

spontaneous brain activity over a 10-minute period, comparing fam57b mut to AB controls. Only electrodes in 294 

contact with the larval head were analyzed, ~6 to 8 electrodes, whose signal was pooled. fam57b mut larvae 295 

had slightly smaller heads than AB at 7 dpf (Supp Fig. 7, Table S8 - Zebrafish Larvae Head and Body 296 

Measurements), however these changes do not impact electrophysiological studies. Overall, fam57b mut 297 

spontaneous brain activity was severely diminished relative to ABs. This included significant decrease in 298 

number of LFPs, mean LFP rate, and inter-LFP-interval coefficient of variation measurements, indicating 299 

decreased spontaneous brain activity with reduced kinetics (Fig. 8a). However, the decreased coefficient of 300 

variation in the fam57b mut suggests LFP interval distributions are detected at a more regular rate. Measuring 301 

electrographic bursts, at least 5 LFPs per 100 ms, we were unable to detect any burst activity under these 302 

settings in the fam57b mut, while bursts were detected in ABs. To increase sensitivity for detection of burst 303 

activity, we lowered the detection parameters to at least 3 LFPs per 200 ms (right column), and found 304 

decreased electrographic burst duration, number of LFPs per burst, burst frequency and percentage in fam57b 305 

mut relative to AB (Fig. 8a). In addition, we examined relative network activity, as defined by at least 3 LFPs 306 

detected simultaneously between a minimum of two electrodes. Relative network activity was also significantly 307 

decreased in fam57b mut compared to AB. Synchrony index of bursts did not change between the two 308 

genotypes, indicating coordination of network activity did not differ. While LFP waveforms could not be 309 

quantified due to small distance variations when mounting individual larva, we observed smaller relative 310 

waveforms in fam57b mut compared to AB (Fig.8c), consistent with overall decreased brain activity in fam57b 311 

mut larvae. A representative raster plot of LFP activity in the head region over the 10-minute recording period 312 

illustrates the relative decrease in LFP propagation, burst and network detection measured (Fig. 8d). A 313 

representative image of a mounted larva immersed in agarose on a 12-well 64 electrode plate is shown in Fig. 314 

8e. These data demonstrate severely diminished spontaneous brain activity in fam57b mut relative to AB 315 

wildtype larvae, and highlight a role for Fam57b in regulating brain function. 316 

After identifying significantly diminished spontaneous brain activity in fam57b mut larvae, we examined 317 

correlations with behavioral activity. We first tested light-responsive sensorimotor startle behavior (Table S9 - 318 

Zebrafish Larvae Light Startle Response Data). Startle response, as indicated by distance traveled, was 319 

measured over a 70-min time-frame with light extinguished every 10 minutes for 5 seconds (Tomasello and 320 

Sive, 2020). The startle response window was in total 30 seconds, including the stimulus. We found a 321 

considerable decrease in response to each light stimulus in fam57b mut compared to AB (Fig. 8f). However, 322 

movement measured previous to startle (first 10 min) and relative habituation after startle cue did not overall 323 
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differ between the genotypes, indicating there is no alteration in movement outside of the light stimulus, and no 324 

visual deficit in fam57b mut larvae.  325 

To examine brain specific activity, we investigated seizure susceptibility (Table S10 - Zebrafish Larvae 326 

Seizure Assay Data). Seizures are prevalent in individuals affected with 16pdel syndrome, and may result 327 

from processes involving several neurotransmitter systems, including glutamatergic, cholinergic and 328 

GABAergic (Mefford et al., 2011). To measure seizure propensity, larvae were immersed in pentylenetetrazol 329 

(PTZ), a GABAA antagonist, well characterized for use in zebrafish (Baraban et al., 2005). After a 10-minute 330 

baseline movement recording, two different concentrations of PTZ, or E3 media only control, were applied to 331 

the individual well of each larva and recorded over 10 minutes. There was no significant change in normalized 332 

movement, compared to baseline recording, in the absence of stimulus after addition of E3 (0 mM PTZ) control 333 

between the fam57b mut and AB (Fig. 8g). Increasing the PTZ dose increased normalized distance traveled 334 

for both genotypes, but the increase was not significant for AB between 0 and 0.5 mM PTZ as observed in 335 

fam57b mut. At 5 mM, we observed significantly less distance traveled in the fam57b mut compared to AB. 336 

However, the relative fold change between 0 and 5 mM was much higher in the fam57b mut (roughly 32-fold) 337 

compared to AB (roughly 11-fold). To understand the contribution of Fam57ba and Fam57bb to the seizure 338 

phenotype, we incrossed fam57ba+/-;fam57bb+/- animals and measured seizure propensity in resulting 339 

genotypes (Supp Fig. 8). We found no statistical differences in baseline movement between AB control 340 

compared to fam57ba-/-;fam57bb-/+, fam57ba-/+;fam57bb-/+ nor fam57ba-/+;fam57bb+/+. The data are consistent 341 

with increased movement after addition of 5 mM PTZ in fam57ba-/-;fam57bb+/+ 7 dpf larvae compared to AB 342 

control (McCammon et al., 2017). The enhanced PTZ-responsiveness of fam57b mut relative to WT suggests 343 

that Fam57ba and Fam57bb function in GABA-mediated signaling with synergistic effects after the loss of 344 

Fam57bb in combination with Fam57ba. These analyses indicate neuronal specific changes after loss of 345 

fam57b mut, however, FAM57B is also expressed in muscle. We assessed neuromuscular junction 346 

contribution by immunostaining, but did not observe differences between fam57b mut and AB (Supp. Fig. 9). 347 

Together, altered brain activity, response to multiple stimuli including GABAA antagonist, and gross anatomical 348 

differences including the corpus cerebelli (Fig. 7f), suggest changes to GABAergic network activity in the 349 

developing fam57b mut brain.  350 

In sum, there are significant behavioral changes in zebrafish larvae after fam57b loss of function. fam 351 

mut larvae move similarly to AB over time without a stimulus. However, with a stimulus – either dark or PTZ 352 

application, there is altered behavioral responsiveness relative to AB. These findings are consistent with 353 

changes in brain activity in fam57b mut relative to AB controls. 354 

 355 

Discussion 356 

This study has uncovered alterations of lipid metabolism in iPSC differentiated cortical neurons derived 357 

from people affected with 16pdel Syndrome, relative to unaffected. These 16pdel neurons display increased 358 

excitability relative to controls, and show a sex-linked difference. Among the set of twenty-five 16pdel genes, 359 
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FAM57B is a key candidate gene linked to symptomatology, and implicated in lipid metabolism. Consistently, 360 

we find changes in 16pdel neuronal lipids, as well as those in FAM57B mutants in a human neuronal cell line 361 

and zebrafish model. In FAM57B mutants, lipid alterations occur concomitantly with alterations in membrane 362 

architecture, synapse lipid composition synapse-associated proteins, and in zebrafish, altered brain activity 363 

and behavior. Specifically, we identified altered abundance of the monoacyglyerol (MG) group in all 364 

experimental conditions, including 16p11.2 deletion neurons and SH-SY5Y FAM57B KO intact neurons and 365 

isolated synaptosomes (Figs. 2a, 4a, 5f, 6a). We do not know how these outcomes are linked, but it is 366 

plausible that FAM57B acts through sphingolipid (SL) and glycerolipid (GL) regulation as the starting point for a 367 

cascade of effects after loss of function. Dysregulated lipid metabolism has a multifaceted effect on neurons, 368 

for example, increased lipid energy consumption escalates oxidative stress, promoting inflammation, 369 

mitochondrial and metabolic dysfunction and excitotoxicity (Tracey et al., 2018). The saturation and length of 370 

individual lipids affects their intracellular localization, impacting the cytoskeleton and lipid raft composition, so 371 

disrupting signaling processes that regulate neurotransmitter synthesis and release, cytoskeletal integrity, 372 

myelination and intracellular transport (Pike, 2003, Tracey et al., 2018). Abnormal cholesterol metabolism has 373 

been observed in patients with Asperger syndrome and other ASDs, suggesting a correlation between lipid raft 374 

formation and ASD (Dziobek et al., 2007, Tierney et al., 2006).  375 

In contrast to a previous report (Yamashita-Sugahara et al., 2013), we find that FAM57B is not a 376 

ceramide synthase (CerS) but rather is a modulator of CerS activity. Supporting a functional interaction 377 

between FAM57B with CerS2 and CerS6, lipidomic profiling uncovered altered SLs and GLs integral to the 378 

lipid membrane in FAM57B mutants of both zebrafish brain and a human neuronal cell line, also indicating 379 

consistent activity of this gene across species. Comparing these mutants with 16pdel iPSC differentiated 380 

patient neurons, we identified a consistent change in ether-linked phosphatidylethanolamine (PE) species, 381 

supporting a role for FAM57B in the altered 16pdel lipidome relative to unaffected. However, some lipid groups 382 

altered in mutant human neuronal cells, zebrafish brain and 16pdel neurons relative to controls are do not 383 

overlap, suggesting additional genes regulate 16pdel lipid metabolites or that these result from other 384 

differences between tissues being compared. Beyond FAM57B, multiple genes in the 16p11.2 interval encode 385 

enzymes with predicted roles in metabolic processing or interconversion including ALDOA, CDIPT, GDPD3, 386 

BOLA2, SULT1A3, SULT1A4 and YPEL3 (Giannuzzi et al., 2019, Arbogast et al., 2016). Together with 387 

FAM57B activity, this set of genes may function to modulate lipid metabolism.  388 

Early in brain development, fam57b mutants displayed altered plasma membrane architecture, while in 389 

more mature neurons, synaptic proteins were present at significantly diminished levels in synaptosomes 390 

prepared from mutants relative to controls. One important affected protein in zebrafish brain was Syt1a, a 391 

member of the Synaptotagmin family and calcium sensor SNARE binding complex protein that contributes to 392 

synchronous synaptic vesicle release (Li et al., 2017). Baker-Gordon Syndrome, a SYT1-associated 393 

neurodevelopmental disorder, maps to an autosomal dominant heterozygous mutation of SYT1, that is 394 

associated with reduced neurotransmitter release (Baker et al., 2018). This association supports our previous 395 
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findings of a genetic interaction between fam57ba and doc2a, another 16p11.2 interval gene, encoding a 396 

calcium sensor SNARE binding complex protein for spontaneous vesicle release, where double heterozygotes 397 

showed hyperactivity and increased seizure propensity (McCammon et al., 2017). In further connections, 398 

ESYT1 is a related Synaptotagmin family member whose synaptic levels were diminished in human neuronal 399 

cell lines, that may play a role in cellular transport of PC, PE, PI, and translocates to sites of contact between 400 

the presynaptic endoplasmic reticulum and the cell membrane in response to increased cytosolic calcium 401 

levels (Yu et al., 2016). Neurotransmission is decreased in Esyt D.melanogaster mutants, with a proposed role 402 

in synapse extension, highlighting the essential homeostasis of lipids at the synapse (Kikuma et al., 2017). 403 

Diminished spontaneous brain activity and altered behavioral response after stimulation seen in fam57b 404 

zebrafish mutants is consistent with alteration of brain synaptic composition. These studies suggest Fam57b is 405 

essential early in development of the brain, and loss of fam57b leads to linked events starting with changes in 406 

plasma membrane architecture followed by disturbance in protein organization at the membrane and 407 

detriments to basic neuronal function that impacts brain activity and behavior. Together, we propose a model 408 

whereby Fam57b functions to maintain normal plasma membrane physiology, necessary for proper formation 409 

and function of neurons (Fig. 8h). 410 

In a recent study that analyzed the largest ASD-associated exome sequence to date (Satterstrom et al., 411 

2019), 102 high risk genes were identified as tightly associated with ASD. In the analysis, a rare G:A mutation 412 

was discovered in FAM57B, located in the 5’UTR of one FAM57B transcript isoform, and residing in the 413 

promoter/enhancer region of the five other FAM57B isoforms. This synonymous mutation is predicted to create 414 

binding sites for several transcription factors and may impact enhancer activity in neurons, affecting gene 415 

expression (prediction with information from dbSNP, JASPAR, GTEx). The association of a single gene FAM57B 416 

mutation with ASD outside of the complex CNV 16pdel gene cohort, encourages further evaluation of FAM57B 417 

in brain development and function.  418 

Correlating the multitude of symptoms to specific genes associated with a multigenic copy number 419 

variant region is extremely challenging. Variation in clinical phenotypes of 16p11.2 deletion syndrome patients 420 

further indicates the need to understand the biology of this CNV (Fetit et al., 2020). Previously, we identified 421 

gene interactions among the 16p11.2 interval (McCammon et al., 2017) that do not converge on functional 422 

networks predicted by ASD gene-set enrichment analysis by Pinto et al. (Pinto et al., 2010), suggesting indirect 423 

mechanisms of genetic interaction. We investigated the interaction between doc2a, encoding for a synaptic 424 

vesicle-associated calcium-binding protein, and fam57ba. Haploinsufficiency of this genetic interaction 425 

identified both a body and central nervous system phenotype, including seizure activity. No evidence for 426 

physical interactions between proteins encoded by 16p11.2 genes has been found (Lin et al., 2015). Along with 427 

DOC2A, several genes within the interval are candidate contributors to neurodevelopment and 428 

neuropsychiatric phenotypes, including KCTD13, SEZ6L2, KIF22, MVP, TAOK2 and QPRT. In a functional 429 

screen, we defined genetic interaction between fam57ba, kctd13, sez6l2 and kif22 (McCammon et al., 2017). 430 

KCTD13 encodes a ubiquitin ligase adaptor with cognitive defects identified in mice heterozygous for the gene 431 
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(Chen et al., 2009, Golzio et al., 2012, Martin Lorenzo et al., 2021). KIF22 is a kinesin-like protein necessary 432 

for embryonic chromosome segregation and axonal branching patterns (Park et al., 2016, Antonio et al., 2000, 433 

Ohsugi et al., 2008). SEZ6L2 has been connected to seizure activity and modulates neurite outgrowth (Boonen 434 

et al., 2016). MVP can function as a regulator of the homeostatic component of experience-dependent 435 

behavior (Ip et al., 2018). TAOK2 encodes a serine/threonine kinase that can play a role in dendrite formation 436 

(de Anda et al., 2012). QPRT encodes quinolinate phosphoribosyltransferase that catabolizes quinolinic acid, 437 

whose elevation has been linked to epilepsy and has also showed regulation by ASD candidate genes 438 

(Chiocchetti et al., 2016, Haslinger et al., 2018). The strong genetic interaction between FAM57B and most of 439 

the above-described genes highlights the connection between lipid regulation and brain development or 440 

maturation. Although FAM57B haploinsufficiency alone cannot account for the multitude of disrupted 441 

biochemical and cellular properties in 16pdel affected neurons, disrupted lipid metabolism is tightly correlated 442 

to 16pdel Syndrome. The insight into lipid alterations and a potential role for FAM57B in mediating these 443 

changes, gives a new view of mechanisms underlying 16pdel Syndrome, and holds promise for new 444 

therapeutic directions.  445 

 446 

Limitations of the Study 447 

In the large 16p11.2 copy number variant interval, haploinsufficient symptoms do not resolve to a single causal 448 

gene. FAM57B interacts genetically with many other 16p11.2 interval genes and is a strong candidate for 449 

contribution to symptomatology. We studied the poorly defined function of FAM57B to understand its role in 450 

lipid regulation and function in the brain. FAM57B mutant neuronal lines do not recapitulate all phenotypes 451 

associated with 16p11.2 deletion syndrome neurons. For instance, the FAM57B heterozygote SH-SY5Y 452 

differentiated neurons and zebrafish brains do not show exactly the same lipid profiles as neurons derived from 453 

16p11.2 deletion iPSC, although there is overlap. Since 16pdel syndrome results from changes in gene 454 

dosage through haploinsufficiency, rescue of FAM57B levels must be precise to match endogenous levels to 455 

avoid spurious gene dosage effects. However, in the 16p11.2 chromosomal deletion, the FAM57B promoter 456 

and enhancer regions are also deleted, it is not an easy task to rescue FAM57B expression to endogenous 457 

levels. The nature of the copy number variant phenotype indicates that exogenous expression to rescue 458 

FAM57B could result in outcomes modulated by dosage, and that the entire gene with its regulatory regions 459 

would have to be used for rescue. The FAM57B regulatory regions have not been mapped, and so are not 460 

available for rescue constructs. 461 
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Data Availability  500 

 The authors declare that all data supporting the findings of this study are available within the article and 501 

its supplementary information.  502 

 Raw data, including proteomics and lipidomics results, are available in the Supplemental Excel 503 

spreadsheet. Additional data can be requested from lead contact. 504 

 Any additional information required to reanalyze the data reported in this paper is available from the 505 

lead contact upon request.  506 

Experimental model and subject details 507 

 508 

Animal Model 509 

Adult zebrafish of the wildtype AB strain were maintained at 28˚C on 12h/12h light/dark cycle. Embryos were 510 

obtained from natural spawning and staged as previously described by Kimmel et al. (Kimmel et al., 1995). 511 

Due to the polygenic nature of sex determination and timing of gonadal development in zebrafish, we are 512 

unable to determine the sexes of the embryos and larvae for our assays. However, because our assays 513 

utilized large numbers of embryos and larvae, both sexes should be adequately represented. Embryos were 514 

obtained from separate crosses of fam57b mut mutant fish. fam57b het fish were generated by crossing 515 

fam57b mut to AB fish. The MIT Committee on Animal Care approved animal experimentation under protocol 516 

0417-036-20. The Whitehead Institute Biosafety Committee approved of all materials under protocol HS001. 517 

All experiments conform to the relevant regulatory standards. 518 

 519 

fam57ba-/- mutants were injected with fam57bb targeted sgRNA at 1 - 4 cell stage, previously described in 520 

McCammon et al. CRISPR/Cas9 induced mutation resulted in 17 bp deletion and early stop codon. 521 

Experiments were performed after 4 generations of crosses with AB controls. 522 

fam57bb 5’ to 3’ TAGGTGATGTCCTGGCAGGAAG 523 

fam57bb 3’ to 5’ AAACCTTCCTGCCAGGACATCA 524 

For genotyping, PCR amplified region of in/del. PCR was digested with EarI restriction enzyme, with 525 

homozygous mutation detected by loss of EarI restriction site. fam57b mut line was outcrossed with AB 526 

periodically to avoid chromosomal abnormalities. 527 

 528 

Generation and characterization of iPSC lines 529 

Unaffected control male and female iPSC lines, 599 and 657, were a generous gift from Rudolf Jaenisch, 530 

originally obtained as fibroblasts from Coriell Institute Biobank. iPSC of 16p11.2 deletion carriers were obtained 531 

from Simons Variation in Individuals Project (Supplemental Table 1) (Simons Vip, 2012). Cell line corresponds 532 

to subjects with abbreviated ID from RUCDR. Acquisition of lines were in consideration of potential sex 533 

differences in 16pdel syndrome. All iPSCs were tested for negative mycoplasma and normal karyotype. 534 
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Cytogenetic analysis was performed on twenty G-banded metaphase cells at Cell Line Genetics. All 535 

experiments involving cells from human donors were performed in compliance with established IRB protocols 536 

at the Whitehead Institute. The Whitehead Institute for Biomedical Research and MIT Biosafety Committees 537 

approved safety considerations around the experiments performed.  538 

 539 

iPSCs - Cells were cultured on plates coated with Matrigel (Corning #CB-40234A) in mTeSR+ media 540 

(STEMCELL Technologies #85850) with pen/strep. Y27632 (STEMCELL Tech #72302) was added to cells 541 

prior to passaging (single colonies), then passaged with ReLeSR or Accutase for single colonies (STEMCELL 542 

Technologies #05872 and #07922). Cells were maintained at 37°C with 5% O2. 543 

 544 

Generation of Cortical Neurons - iPSCs were differentiated into neural progenitor cells (NPCs) by FGF 545 

exchange. FGF was slowly removed by exchanging mTeSR+ with -FGF media (DMEM/F12/HEPES (Thermo 546 

Fisher Scientific #12400024), Neurobasal (Thermo Fisher Scientific #21103049), N2 (Gibco #17502048), 547 

Gem21 (GeminiBio #400-160) MEM non-essential amino acids (NEAA) (Thermo Fisher Scientific #11140050), 548 

GlutaMAX (Gibco #35050061), pen/strep, D(+) Glucose and NaCl) every day over 2 - 3 weeks. When rosettes 549 

were present, media was exchanged with +FGF media (DMEM/F12/HEPES, Neurobasal, N2, Gem21 - 550 

Vitamin A (GeminiBio #400161), MEM NEAA, GlutaMAX, pen/strep, Beta-Mercaptoethanol (Sigma-Aldrich 551 

#M3148) and 4 ng/mL FGF (Peprotech #100-18B)) plus 2.5 μM/mL dorsomorphin (Tocris #3093). Cells were 552 

incubated with Y27632 before passaging with Accutase, expanded and passaged at least 3 times until 553 

homogeneous NPC culture. NPCs were passaged on poly-D-lysine (Thermo Fisher Scientific #A3890401) and 554 

laminin (Sigma-Aldrich #L2020) coated plates for cortical neuron differentiation. NPCs media was exchanged 555 

with Neuronal Differentiation media (Neurobasal, GlutaMAX, NEAA, D(+) Glucose, Gem21, Culture One 556 

(Gibco #A3320201), 5 μg/mL BDNF and GDNF (Peprotech #450-02 & #450-10), pen/strep) for 1 month, 557 

changing media every 2 to 3 days. Cells were maintained at 37°C under normoxic conditions. 558 

 559 

Generation and characterization of SH-SY5Y Neuroblastoma cell line 560 

SH-SY5Y cells, originally from ATCC, were a kind gift from David Bartel, Whitehead Institute for Biomedical 561 

Research. Cells were maintained in EMEM (ATCC # 30-2003), F12 (ATCC # 30-2006) media supplemented 562 

with fetal bovine serum (FBS Sigma-Aldrich #12306C) and pen/strep in a 37˚C incubator with 5% CO2. 563 

Differentiation of cells to neuronal model were induced with media containing Neurobasal, Gem21, GlutaMAX, 564 

All-trans-retinoic acid (Sigma-Aldrich # R2625) and pen/strep, for 4 days in dark to prevent retinoic acid 565 

degradation from light exposure (Kovalevich J, 2013). 566 

 567 

CRISPR sgRNA designs were identified from Target Guide Sequence Cloning Protocol, Zhang lab, with 568 

sequence overlapping the TLC domain of FAM57B (Cong et al., 2013). 10 targeted guides to FAM57B 569 

sequence were individually transformed in pLC OPTI-Stuffer plasmid, a kind gift from David Sabatini, 570 
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Whitehead Institute, and lentivirus was grown in HEK293T cells. Generation of CRISPR/Cas9 induced 571 

mutations via lentiviral transduction was performed according to Wang et al. protocols (Wang et al., 2014, 572 

Wiles et al., 2015). After puromycin selection, cells were gently triturated and diluted to approximate 1 cell per 573 

well in 96 well plate. Wildtype cells were simultaneously single cell diluted and sorted to serve as additional 574 

control for experiments. Incorporation of mutation was determined by Next Generation Sequencing.  575 

 576 

FAM57B Homozygote deletion (KO) 577 

sgFAM57B1 5’ to 3’ - GGTGCTCCACCATGCCGCCA 578 

Mutation resulted in frameshift with 111 and 121 bp deletion on either strand, resulting in early stop codon.  579 

 580 

FAM57B Heterozygote deletion (HET) 581 

sgFAM57B2 5’ to 3’ - GGGCACAGCAAATTGCGTGT 582 

Mutation resulted in frameshift with 20 bp deletion on one strand, resulting in early stop codon. 583 

 584 

Adeno-Associated Virus Integration Site 1 (AAVS1) targeted control 585 

sgAAVS1 5’ to 3’ - CACCGGGGCCACTAGGGACAGGAT 586 

Mutation resulted in frameshift and 51 bp and 1 bp deletion on either stand, resulting in early stop codon. The 587 

AAVS1 served as a control for all SH-SY5Y experiments. WT was compared to AAVS1 to determine 588 

confidence of statistical significance when compared to FAM57B HET and KO. 589 

Method Details 590 

HEK293 Cell Culture and Co-Immunoprecipitation  591 

HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (Corning # MT15017CV) supplemented 592 

with 10% fetal bovine serum, 100 IU/ml penicillin, 100 µg/ml streptomycin, and 110 µg/ml sodium pyruvate. 593 

Transfections were performed with the polyethylenimine reagent (Sigma-Aldrich # 08719) using 8 µg of 594 

plasmid per 10 cm culture dish for 36–48 h; medium was exchanged after 6 hours. pcDNA3.1 was used as a 595 

control. DYKDDDDK (Flag)-tagged human FAM57B plasmid (sequence sent to Genscript and available upon 596 

request). Hemagglutinin (HA)-tagged human CerS plasmids were generated as described (Laviad et al., 2012).  597 

Co-immunoprecipitation was performed using cells transfected with a variety of plasmids in pcDNA3.1-C-DYK 598 

or pcDNA3.1-C-HA (sequences sent to Genscript and available upon request). HA-tagged CerSs were used to 599 

confirm non-specific binding to Flag affinity resins. Cells were washed twice with cold PBS and lysed in lysis 600 

buffer (20 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% NP-40, 5% glycerol and protease inhibitor 601 

(Sigma-Aldrich #200-664-3)). Lysates were incubated on ice for 10-15 min. Protein was determined using the 602 

BCA reagent. FLAG-tagged human FAM57B, using an anti-FLAG affinity resin (Genscript #L00432). Lysates 603 
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were incubated with 40 µl of beads overnight at 4°C with rotation. The resin was washed three times in 1 ml of 604 

lysis buffer at 4°C with rotation. Proteins were eluted using 4X SDS sample buffer (BioRad #161-0747). Eluted 605 

proteins were analyzed by Western blotting for detection of HA-tagged interacting proteins.  606 

 607 

Ceramide Synthase Assays 608 

Cell homogenates were prepared in 20 mM HEPES-KOH, pH 7.2, 25 mM KCl, 250 mM sucrose, and 2 mM 609 

MgCl2 containing a protease inhibitor mixture. Protein was determined using the BCA reagent (Thermo Fisher 610 

Scientific). Samples were incubated with 15 µM NBD-sphinganine (Avanti Polar Lipids # 810206P), 20 µM 611 

defatted BSA (Sigma-Aldrich #10775835001), and 50 µM 16- or 24-fatty acyl-CoA (Avanti Polar Lipids 870743 612 

& 870725) in a 20 µl reaction volume. CerS (40 µg protein, 25 min reaction time) was assayed using C24.1-613 

CoA and Cer5/6 (5 µg protein, 5 min reaction time) assayed using C16-CoA.  Reactions were terminated by 614 

chloroform/methanol (1:2, v/v) and lipids extracted. Lipids were dried under N2, resuspended in 615 

chloroform/methanol (9:1, v/v), and separated by thin layer chromatography using chloroform/methanol, 2M 616 

NH4OH (40:10:1, v/v/v) as the developing solvent. NBD-labeled lipids were visualized using an Amersham 617 

Typhoon5 imager and quantified by ImageQuantTL (GE Healthcare, Chalfont St Giles, UK). All solvents were 618 

of analytical grade and were purchased from Bio-Lab (Jerusalem, Israel). 619 

 620 

Sample Collection for Lipidomics 621 

iPSC Differentiated Neurons - 2 x 106 NPCs were plated in 6 well plate, at least 3 wells per genotype. 622 

Differentiation to cortical neurons was performed as stated above. Cells were washed with phosphate buffered 623 

saline solution (PBS). Cells were scraped in LC grade methanol and homogenized in eppendorf tube 624 

containing water and LC grade chloroform with pestle mixer, followed by vortexing for 10 minutes at 4°C. Lipids 625 

were separated by centrifuging top speed at 4°C. This was repeated three times with all samples run together 626 

in positive ion mode for lipidomic analysis. Raw data are provided in the Supplemental Excel spreadsheet. 627 

 628 

Differentiated SH-SY5Y Cells - 1 x 106 cells were plated per well in 6 well plate, 3 wells per genotype. SH cells 629 

were differentiated over 4 days in media containing retinoic acid. Cells were washed with PBS. Cells were 630 

scraped in LC grade methanol and homogenized in eppendorf tube containing water and LC grade chloroform 631 

with pestle mixer, followed by vortexing for 10 minutes at 4°C. Lipids were separated by centrifuging top speed 632 

at 4°C. This was repeated twice with all samples run together. Raw data are provided in the Supplemental 633 

Excel spreadsheet. 634 

 635 

Zebrafish - At 7 dpf, larvae were deeply anesthetized with tricaine. Brains with surrounding epidermal layer 636 

were dissected and flash frozen on dry ice. Collections were pooled at 20 brains per sample. Brains were 637 

homogenized in an eppendorf tube with a pestle mixer in LC grade methanol, LC grade chloroform and water, 638 

followed by vortexing for 10 minutes at 4°C. Lipids were separated by centrifuging top speed at 4°C. Brains 639 
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were collected and stored in -80°C over many dissections to acquire adequate tissue for analysis. This was 640 

repeated twice per genotype, with the fam57b mut and AB cohort run at different times (different normalization) 641 

while the fam57b het and AB cohort were run at the same time. Raw data are provided in the Supplemental 642 

Excel spreadsheet. 643 

 644 

Untargeted Lipidomics 645 

Lipids were separated on an Ascentis Express C18 2.1 x 150 mm 2.7 um column (Sigma-Aldrich) connected to 646 

a Vanquish Horizon UPLC system and an ID-X tribrid mass spectrometer (Thermo Fisher Scientific) equipped 647 

with a heated electrospray ionization (HESI) probe. External mass calibration was performed using the 648 

standard calibration mixture every seven days. Dried lipid extracts were reconstituted in 50 uL 65:30:5 649 

acetonitrile: isopropanol: water (v/v/v). Typically, 2 uL of sample were injected onto the column, with separate 650 

injections for positive and negative ionization modes. Mobile phase A in the chromatographic method consisted 651 

of 60:40 water: acetonitrile with 10 mM ammonium formate and 0.1% formic acid, and mobile phase B 652 

consisted of 90:10 isopropanol: acetonitrile, with 10 mM ammonium formate and 0.1% formic acid. The 653 

chromatographic gradient was adapted from Hu et al. 2008 (Hu et al., 2008) and Bird et al. 2011 (Bird et al., 654 

2011). Briefly, the elution was performed with a gradient of 40 min; during 0−1.5 min isocratic elution with 32% 655 

B; from 1.5 to 4 min increase to 45% B, from 4 to 5 min increase to 52% B, from 5 to 8 min to 58% B, from 8 to 656 

11 min to 66% B, from 11 to 14 min to 70% B, from 14 to 18 min to 75% B, from 18 to 21 min to 97% B, during 657 

21 to 35 min 97% B is maintained; from 35−35.1 min solvent B was decreased to 32% and then maintained for 658 

another 4.9 min for column re-equilibration. The flow rate was set to 0.260 mL/min. The column oven and 659 

autosampler were held at 55°C and 15°C, respectively. The mass spectrometer parameters were as follows: 660 

The spray voltage was set to 3.25 kV in positive mode and 3.0 kV in negative mode, and the heated capillary 661 

and the HESI were held at 300°C and 375°C, respectively. The S-lens RF level was set to 45, and the sheath 662 

and auxiliary gas were set to 40 and 10 units, respectively. These conditions were held constant for both 663 

positive and negative ionization mode acquisitions. The mass spectrometer was operated in full-scan-664 

ddMS/MS mode with an orbitrap resolution of 120,000 (MS1) and 30,000 (MS/MS). Internal calibration using 665 

Easy IC was enabled. Quadrupole isolation was enabled, the AGC target was 1x105, the maximum injection 666 

time was 50 msec, and the scan range was m/z = 200-2000. For data-dependent MS/MS, the cycle time as 1.5 667 

sec, the isolation window was 1, and an intensity threshold of 1x103 was used. HCD fragmentation was 668 

achieved using a step-wise collision energy of 15, 25, and 35 units, and detected in the orbitrap with an AGC 669 

target of 5x104 and a maximum injection time of 54 msec. Isotopic exclusion was on, a dynamic exclusion 670 

window of 2.5 sec was used, and an exclusion list was generated using a solvent bank.  671 

 672 

High-throughput annotation and relative quantification of lipids was performed using LipidSearch v4.2.21 673 

(Thermo Fisher Scientific/ Mitsui Knowledge Industries) using the HCD database (Taguchi and Ishikawa, 2010, 674 

Yamada et al., 2013). LipidSearch matches MS/MS data in the experimental data with spectral data in the 675 
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HCD database. Precursor ion tolerance was set to 5 ppm, product ion tolerance was set to 10 ppm. 676 

LipidSearch nomenclature uses underscores to separate the fatty acyl chains to indicate the lack of sn 677 

positional information. In cases where there is insufficient MS/MS data to identify all acyl chains, only the sum 678 

of the chains is displayed. Following the peak search, positive and negative mode data were aligned together 679 

where possible and raw peak areas for all annotated lipids were exported to Microsoft Excel and filtered 680 

according to the following predetermined quality control criteria: Rej (“Reject” parameter calculated by 681 

LipidSearch) equal to 0; PQ (“Peak Quality” parameter calculated by LipidSearch software) greater than 0.75; 682 

CV (standard deviation/ mean peak area across triplicate injections of a represented (pooled) biological 683 

sample) below 0.4; R (linear correlation across a three-point dilution series of the representative (pooled) 684 

biological sample) greater than 0.9. Typically, ~70% of annotated lipids passed all four quality control criteria. 685 

Redundant lipid ions (those with identical retention times and multiple adducts) were removed such that only 686 

one lipid ion per species/ per unique retention time is reported in merged alignments. For data where positive 687 

and negative mode data were aligned separately some redundancies may still exist. Raw peak areas of the 688 

filtered lipids were normalized to total lipid signal (positive or negative ionization mode) in each sample to 689 

control for sample loading. Data presented are shown as Log2FC compared to wildtype/control samples. 690 

Statistics were performed in Prism, with each run analyzed separately.  691 

 692 

Zebrafish brain staining and imaging 693 

For 24 hours post-fertilization staining, embryos were deeply anesthetized in tricaine after being 694 

dechorionated. Embryos were places into wells in 1% Agarose dishes. 1 ng Cholera Toxin subunit B (CT-B) 695 

(Recombinant Alexa Fluor 488 conjugate, Invitrogen #C34775) was injected into the hindbrain ventricle 696 

(Gutzman and Sive, 2010). Embryos were washed with E3 and incubated for 1 hour to allow CT-B binding. 697 

Embryos were then fixed in fresh 4% PFA in phosphate buffered solution (PBS) overnight at 4°C. Embryos 698 

were washed in PBS + Tween-20 (PBT) and incubated with 555-Phalloidin (Invitrogen #A34055) for 1 hour. 699 

Alternatively, embryos were incubated with Duramycin-Cy3 conjugate (Molecular Targeting Technologies #D-700 

1006) PE stain for 45 min. Embryos were washed in PBT and mounted in DAPI Antifade (Thermo Fisher 701 

Scientific #P36931) overnight. Imaging was performed on an inverted Zeiss LSM700 Laser Scanning Confocal 702 

and processed on Fiji (ImageJ). CT-B and Duramycin images were processed on ImageJ to measure relative 703 

puncta from staining. Particles were measured after drawing a size circle in each hemisphere comparing AB to 704 

fam57b mut embryos. Threshold was set to intermodes to assume for bimodal histogram, particle size set 705 

between 0 – 2 μm2. 706 

 707 

For 7 dpf larvae, the following protocol was adapted from the mouse protocol provided by LifeCanvas 708 

Technologies (SHIELD kit, LifeCanvas Technologies). At 7 dpf, zebrafish were collected into Eppendorf tubes, 709 

25 zebrafish per tube and anesthetized on ice briefly. Embryo buffer E3 was removed and replaced with 1 mL 710 

SHIELD Perfusion Solution with diluted 4% paraformaldehyde (PFA) (Electron Microscopy Sciences # 50-980-711 
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495), shaking overnight at 4°C. Whole zebrafish brains were dissected the next day and placed into tubes with 712 

fresh SHIELD Perfusion Solution, shaking overnight at 4°C. Tissue was placed into 1 mL SHIELD OFF 713 

solution, shaking overnight at 4°C. Tissue was transferred into SHIELD ON Buffer, shaking overnight at 37°C 714 

in MaxQ 4450 (ThermoFisher Scientific). Tissue was then cleared with 1 mL passive clearing protocol using 715 

SDS Clearing Solution, shaking for 5 days at 45°C. Clearing solution was washed off with 1 mL PBS + 1% 716 

Triton-X (PBT) with 0.02% Sodium Azide 3 times over 24 hours shaking at 37°C. Tissue was blocked in 1 mL 717 

PBT + 1% BSA for 2 hours shaking at room temperature, then incubated in primary antibody, shaking 718 

overnight at 4°C. Antibodies: 1:100 Synaptotagmin-1 (Lifespan Bioscience # LS-B12889), GAD65 + GAD67 719 

(Abcam #ab11070), Beta-Actin (Proteintech 60008-1) and 1:500 DAPI (Life Technologies # D1306), in 0.5 mL 720 

PBT + 1% BSA. Primary antibody was washed off 3 times in PBT and incubated in secondary antibody 721 

shaking overnight at 4 °C (1:500 488- 555- 680-conjugated antibodies (Jackson ImmunoResearch, 488 anti-722 

goat #805-545-180, 488 anti-mouse #715-545-151, 594 anti-mouse #715-585-150, 594 anti-rabbit #711-585-723 

152, anti-mouse 680 #715-625-150, anti-rabbit 680 #711-625-152) in PBT + 1% BSA). Secondary was washed 724 

off 3 times in PBT, then 1 mL EasyIndex was added to tissue, shaking overnight at room temperature. Whole 725 

brains were mounted in fresh EasyIndex on slides, placing coverslip with vacuum grease. Imaging was 726 

performed on an inverted Zeiss LSM700 Laser Scanning Confocal and processed on Fiji (ImageJ).  727 

 728 

PH3 Staining 729 

At 24 hpf, fam57b mut and AB embryos were dechorionated and fixed overnight at 4°C in paraformaldehyde. 730 

Embryos were washed with phosphate buffered saline with Tween-20 (PBT) and yolk sac was removed. 731 

Embryos were incubated with 10% H2O2 for 1.5 hrs, then washed in PBT. Embryos were blocked in PBT with 732 

bovine serum albumin at room temp for 4 hrs, then incubated with α-PH3 antibody (1:1000, Upstate 733 

Biotechnology #06-570) overnight at room temp.  Embryos were washed with PBT and incubated with 734 

secondary antibody (1:500 goat α-rabbit IgG HRP, Invitrogen #31460) in PBT overnight at room temp. 735 

Embryos were washed in PBT and flat mounted on glass slide with propidium iodide in glycerol. Imaging was 736 

performed on a confocal microscope. 737 

 738 

TUNEL Staining  739 

Embryos were collected, fixed and processed as PH3 staining. Embryos were then dehydrated then 740 

rehydrated interchanging ethanol and PBT. Proteinase K (Invitrogen # EO0491) was incubated in PBT on 741 

neutator, then rinsed in PBT. TdT labeling was followed per manufacturer's instructions, ApopTag kit 742 

(Chemicon # S7101). α-DIG (1:100, Thermo Fisher Scientific #700772) was used to detect the DIG labeled 743 

ends. Embryos were washed in PBT and flat mounted on glass slide with propidium iodide in glycerol. Imaging 744 

was performed on a confocal microscope. 745 

 746 

Immunocytochemistry 747 
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Patient derived neurons were washed with PBS and fixed in fresh 4% paraformaldehyde in PBS overnight 748 

rocking at 4°C. Cells were washed with PBT and blocked in PBT + BSA for 1 hour at room temperature. 749 

Primary antibody was added to PBT overnight rocking at 4°C. Antibodies: 1:100 Syt-1, Vesicular Glutamate 1 750 

and 2 (VGlut1/2, Synaptic Systems #135503) or Postsynaptic Density 95 (PSD95, Abcam #ab18258), 751 

Acetylated-Tubulin (Ac-Tubulin, Abcam #ab179513). Primary antibody was washed off 3 times in PBT and 752 

incubated in secondary antibody shaking overnight at 4°C (1:500 488- 555- 680- (Jackson ImmunoResearch, 753 

see above) in PBT + BSA). Secondary was washed off 3 times in PBT, rocking for 2 hours at room 754 

temperature. Cells were washed 3 times in PBT and mounted on slides with DAPI (Prolong Gold Antifade with 755 

DAPI (Life Technologies #P36935). Imaging was performed on an inverted Zeiss LSM700 Laser Scanning 756 

Confocal and processed on Fiji (ImageJ).  757 

 758 

SH-SY5Y cells were plated on coverslips and differentiated over 4 days with retinoic acid medium. The same 759 

imaging protocol was performed as above. Antibody: 1:200 Beta-Actin. 760 

 761 

Western blot 762 

HEK293T studies - Proteins were separated by SDS-PAGE and transferred to nitrocellulose membranes. HA-763 

tagged constructs were identified using antibodies against HA or Flag peptides (1:5,000, Abcam #ab18181, 764 

#ab1162), and goat anti-rabbit or mouse horseradish peroxidase (1:10,000, #323-001-021, #223-005-024) 765 

were used as secondary antibodies (Jackson). Equal loading was confirmed using a mouse anti-GAPDH 766 

(Abcam #ab8245). Detection was performed using the ECL detection system.  767 

 768 

Larvae brain tissue (25 larvae brains pooled per sample) or differentiated SH-SY5Y cells (1 x 106 cells per 769 

sample) were washed with PBS then lysed in RIPA buffer (Thermo Fisher Scientific #89900) with protease 770 

inhibitor cocktail with a pestle homogenizer. Tissue/cells were rotate at 4°C for 30 min, then spun full speed 10 771 

min. The supernatant was removed containing proteins, with denature in laemmli buffer for 1 hr at RT. Protein 772 

was separated on 10-40% gel and transferred PVDF by wet transfer. Membranes were blocked in 5% dry milk 773 

in TBS + Tween 20. Primary antibody was incubated overnight. Same antibodies were used for 774 

immunofluorescence and western analysis. Antibodies: Syt-1, Beta-Actin, GAPDH), FAM57B (Proteintech 775 

20760-1-AP). Secondary antibodies 1:2000 IRDye (Li-Cor 800CW Rabbit #92632211, 680RD Mouse 776 

#92668070) were incubated for 1 hour at room temperature. Blots were imaged and quantified on a Li-Cor 777 

Odyssey.   778 

 779 

Biotinylation and MS/MS 780 

At 7 dpf, larvae were deeply anesthetized with tricaine. Larvae were dissected in PBS with protease inhibitor 781 

cocktail on ice, pooling 20 brains per genotype per sample. Assay was performed according to protocol 782 

utilizing Pierce Cell Surface Protein Isolation Kit (Thermo Fisher Scientific #89881) with the following 783 
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modifications. 1 vial of biotin was resuspended in 2 mL PBS and fresh brains were incubated with 1 mL 784 

biotin/PBS solution rotating for 45 minutes at 4C. Elution of biotin-bound proteins in water + DTT 1 hour at 785 

room temperature. Eluates were reduced, alkylated and digested with trypsin at 37°C overnight.  This solution 786 

was subjected to solid phase extraction to concentrate the peptides and remove unwanted reagents. Solution 787 

was injected onto a Waters NanoAcquity HPLC equipped with a self-packed Aeris 3.6 µm C18 analytical 788 

column 0.075 mm by 20 cm, (Phenomenex). Peptides were eluted using standard reverse-phase gradients. 789 

The effluent from the column was analyzed using a Thermo Orbitrap Elite mass spectrometer (nanospray 790 

configuration) operated in a data dependent manner for 54 minutes. The resulting fragmentation spectra were 791 

correlated against the known database using Mascot (Matrix Science). Scaffold Q+S (Proteome Software) was 792 

used to provide consensus reports for the identified proteins. PEAKS Studio 8.5 was used for data analysis as 793 

a supplement to Mascot. Raw data are provided in the Supplemental Excel spreadsheet. 794 

 795 

Synaptosome Isolation 796 

7 dpf zebrafish larvae were anesthetized in Tricaine with larvae buffer E3. Whole brains were dissected from 797 

the larvae and placed into a 1.5 mL Eppendorf tube on ice, pooling 20 brains per genotype. The tissue was 798 

centrifuged at top speed and excess liquid was removed.  200 μl of SYN-Per Reagent (Thermo Fisher 799 

Scientific #87793) plus protease cocktail inhibitor was added to the eppendorf on ice. With a pestle, the brains 800 

were homogenized with 10 strokes and the tube was gently turned 3 times to dissociate cells. The tissue was 801 

centrifuged at 1200 x G for 10 min at 4°C. The supernatant was collected and added to a new Eppendorf tube. 802 

The sample was centrifuged at 15,000 x G for 20 min at 4°C. The supernatant was removed and the pellet was 803 

gently resuspended in 100 μl of SYN-Per Reagent plus protease cocktail inhibitor. The samples were flash 804 

frozen and processed for tandem mass spectrometry (MS/MS) after reducing alkylating and digesting with 805 

trypsin as indicated above.  806 

 807 

SH-SY5Y cells were plated at 1 x 106 per well in 6 well plates, with 1 well per independent sample for all 808 

genotypes. After 4 days differentiation, cells were washed with PBS plus protease inhibitor cocktail. Cells were 809 

scraped in the same solution and centrifuges in 1.5 mL Eppendorf tube at top speed for 30 seconds at 4°C. 810 

The wash was removed and the same protocol was used as for larval brain synaptosome isolation. After 811 

samples were flash frozen, they were then processed for MS/MS or LC/MS analysis. Raw data are provided in 812 

the Supplemental Excel spreadsheet. 813 

 814 

Electrophysiology  815 

iPSC Differentiated Neurons - 1 x 104 NPCs were plated and matured over 1 month in a PDL and Laminin 816 

coated 48-well CytoView plate (Axion Biosystems # M768-tMEA-48B). Recordings of spontaneous activity 817 

were taken over 10-minute periods on the Maestro system (Axion Biosystems). AxIS software compiled the 818 

data collected from recordings. Data were collected for LFPs (firing frequency in Hz), electrographic burst 819 
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events (minimum 5 LFPs/100 ms) and relative network activity (minimum 3 LFPs detected simultaneously 820 

between a minimum of two electrodes). LFP detection was filtered at 6 × standard deviation to remove potential 821 

artifacts. The external physiological solution contained (in mM) 128 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 25 HEPES 822 

and 30 glucose, pH 7.3, Osmolarity 315 - 325. The High KCl solution contained (in mM) 63 NaCl, 70 KCl, 2 823 

CaCl2, 1 MgCl2, 25 HEPES and 30 glucose, pH 7.3, Osmolarity 315 - 325. 824 

 825 

Live larvae MEA recordings were performed as detailed in Tomasello and Sive 2020 (Tomasello and Sive, 826 

2020). For these recordings, larva was immersed in low-melt agarose in 12-well 64 electrode Cytoview plates 827 

(Axion Biosystems (discontinued, recommend 6-well plate)). LFP activity was recorded for 10 minutes, noting 828 

the electrodes in contact with larva head region. Larva were immediately sacrificed after recordings. Data was 829 

processed with AxIS and Axion Neural Metric Tool (Axion Biosystems). 830 

 831 

Larval Behavior 832 

At 7 dpf, dishes containing larvae were moved to the bench to allow acclimation to RT. For experimentation, 833 

only larvae with an inflated swim bladder and no other morphology phenotypes, such as a crooked tail, were 834 

selected. With a cut 200 µl tip, larvae were individually pipetted into 96-well plates with 200 µl E3 media and 835 

moved to the Noldus Daniovision for 10 min habituation period. The larvae were exposed to a testing period of 836 

70 minutes, with light (at 10%) extinguished for 5 seconds at 10-minute intervals. Point tracking collected 837 

distance and velocity traveled. Distance moved was calculated using the Ethovision XT 11 software from 838 

Noldus. Raw data are provided in the Supplemental Excel spreadsheet. 839 

 840 

The same method is performed as above up to habituation. Baseline activity was then recorded for 10 minutes, 841 

followed by exchange of 100 µl E3 from each well with 100 µl of varying concentrations of PTZ to test a range 842 

of doses. Plates were immediately placed back on the Daniovision system for another 10 min recording. Point 843 

tracking collected distance and velocity traveled. Distance moved was calculated using the Ethovision XT 11 844 

software from Noldus, normalizing to habituation time. Raw data are provided in the Supplemental Excel 845 

spreadsheet. 846 

 847 

Neuromuscular Junction Staining 848 

Larvae were fixed in 4% PFA. Alpha-Bungarotoxin AlexaFluor 488 conjugate (Invitrogen B13422) was used at 849 

1:500, znp1 (anti-SYT2, Abcam ab154035) monoclonal antibody was used at 1:200, with secondary antibody 850 

594 anti-mouse (Jackson #715-585-150) incubated at 1:500.  851 

 852 

Larval Head Measurements 853 

Larvae were deeply anesthetized in tricaine and immersed in methylcellulose for brightfield imaging on Leica 854 

microscope. Larvae were oriented for dorsal measurements of dorsal head length, hindbrain head length, inter-855 
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eye width and forebrain head length, and oriented for lateral measurements of head height, lateral head length, 856 

eye width, eye height and lateral length. Schematic of measurements can be found in McCammon et al. 2017 857 

(McCammon et al., 2017). Raw data and conversion measurements are provided in the Supplemental Excel 858 

spreadsheet. 859 

 860 

Quantification and statistical analysis 861 

With exception to proteomic analysis in Figures 5C, 5D, 7E, 7H, all statistical analysis was performed in Prism. 862 

Statistical test is denoted in the figure legend corresponding to the appropriate figure. Error bars represent 863 

standard error of the mean. Asterisks are defined in each relevant figure legend. On the lipidomic analysis of 864 

individual species, to correct p-values we had utilized Sidak’s multiple comparisons post hoc test rather than 865 

FDR. Note, we tried FDR for multiple hypothesis correction, and that method produced similar results. GO 866 

SLIM analysis was performed with PANTHER Classification System (www.pantherdb.org) that combines 867 

genomes, gene function classifications, pathways and statistical analysis tools to enable biologists to analyze 868 

large-scale genome-wide experimental data (Mi et al., 2019). For the Proteomics analysis, the peptide 869 

intensities of biological samples were analyzed with MSstats, an R package for statistical analysis, using the 870 

options FDR=0.05 or 0.01, 'removeProtein_with1Feature=TRUE' and 'fewMeasurements="remove"'. The 871 

labeled genes indicate lowest p-values. For post hoc colocalization analysis of iPSC differentiated neurons 872 

(Table 2), individual cell somas were outlined by freehand in FIJI, followed by Coloc 2 colocalization analysis 873 

between Synaptotagmin-1 (Channel 1) and PSD-95 (Channel 2). Neurons were isolated between 3 images per 874 

genotype of representative images from Supplemental Fig. 1. Similar statistics are indicated between control 875 

16pdel neurons.  876 

 877 

Additional Resources 878 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Synaptotagmin-1 Lifespan Bioscience LS-B12889 

GAD65 + 67 Abcam ab11070 

Beta-Actin Proteintech 60008-1 

DAPI Life Technologies D1306 

555-Phalloidin Invitrogen A34055 

488 anti-goat Jackson 805-545-180, 

488 anti-mouse Jackson 715-545-151 

594 anti-mouse Jackson 715-585-150 

594 anti-rabbit Jackson 711-585-152 

anti-mouse 680 Jackson 715-625-150 

anti-rabbit 680 Jackson 711-625-152 

VGlut1/2 Synaptic Systems 135503 

PSD95 Abcam ab18258 

Ac-Tubulin Abcam ab179513 

Prolong Gold Antifade with DAPI LifeTech P36935 

HA Abcam ab18181 
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FLAG Abcam ab1162 

GAPDH Abcam ab8245 

Li-Cor 800CW Rabbit Li-Cor 92632211 

Li-Cor 680RD Mouse Li-Cor 92668070 

Chemicals, peptides, and recombinant proteins 

Matrigel Corning CB-40234A 

mTeSR+ STEMCELL Tech 85850 

Y27632 STEMCELL Tech 72302 

ReLeSR STEMCELL Tech 05872 

Accutase STEMCELL Tech 07922 

DMEM/F12/HEPES Thermo 12400024 

Neurobasal Thermo 21103049 

N2 Gibco 17502048 

Gem21 GeminiBio 400-160 

MEM NEAA Thermo 11140050 

GlutaMAX Gibco 35050061 

Gem21 - Vit A GeminiBio 400161 

Beta-Mercaptoethanol Sigma M3148 

FGF Peprotech 100-18B 

BDNF Peprotech 450-02 

GDNF Peprotech 450-10 

Dorsomorphin Tocis 3093 

Poly-D-Lysine Thermo A3890401 

Laminin Sigma L2020 

EMEM ATCC 30-2003 

F12 ATCC 30-2006 

FBS Sigma 12306C 

All-trans-RA Sigma R2625 

DMEM Corning MT15017CV 

Polyethylenimine Sigma 08719 

Protease Inhibitor Cocktail Sigma 200-664-3 

NBD-spinganine Avanti Polar 810206P 

BSA -FA Sigma 10775835001 

16.1 Coenzyme A Avanti Polar 870743 

24.1 Coenzyme 1 Avanti Polar 870725 

CT-B Invitrogen C34775 

Duramycin-Cy3 Molecular Targeting D-1006 

SHIELD LifeCanvas Tech https://lifecanvastech
.com/products/shield 

PFA EMS 50-970-495 

RIPA Thermo 89900 

SYN-Per Thermo 87793 

Critical commercial assays 

Pierce Cell Surface Protein Isolation Kit Thermo 89881 

Deposited data 

Lipidomics This Paper Supplemental Excel 

Biotinylation Proteomics This Paper Supplemental Excel 

Synaptosome Proteomics This Paper Supplemental Excel 

Experimental models: Cell lines 

SH-SY5Y ATCC CRL-2266 

HEK293T ATCC CRL-3216 
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IPSC 16pdel 1453 Simons VIP SV0001453 

IPSC 16pdel 1455 Simons VIP SV0001455 

IPSC 16pdel 1459 Simons VIP SV0001459 

IPSC 16pdel 1473 Simons VIP SV0001473 

IPSC 16pdel 1481 Simons VIP SV0001481 

IPSC 16pdel 1495 Simons VIP SV0001495 

IPSC 16pdel 3104 Simons VIP SS0013104 

IPSC CTR 599 Corriell Institute 
Biobank 

AG07599 
 

IPSC CTR 675 Corriell Institute 
Biobank 

AG07657 
 

Experimental models: Organisms/strains 

fam57ba-/-;fam57bb-/- Zebrafish This Paper  

FAM57B HET SH-SY5Y This Paper  

FAM57B KO SH-SY5Y This Paper  

FAM57B AAVS1 SH-SY5Y This Paper  

Oligonucleotides   

fam57bb 5’ to 3’ TAGGTGATGTCCTGGCAGGAAG This Paper  

fam57bb 3’ to 5’ AAACCTTCCTGCCAGGACATCA This Paper  

sgFAM57B1 5’ to 3’ - GGTGCTCCACCATGCCGCCA This Paper  

sgFAM57B2 5’ to 3’ - GGGCACAGCAAATTGCGTGT This Paper  

sgAAVS1 5’ to 3’ - CACCGGGGCCACTAGGGACAGGAT This Paper  

Recombinant DNA 

FAM57B-Flag This Paper  

CerS2-HA This Paper  

CerS5-HA This Paper  

CerS6-HA This Paper  

Software and algorithms 

AxIS and Neural Metric Tool Axion Biosystems Axionbiosystems.co
m 

FIJI ImageJ ImageJ Imagej.net 

GO SLIM analysis PANTHER pantherdb.org 

LipidSearch Thermo Scientific IQLAAEGABSFAPC
MBFK 

Mascot Matrix Science Matrixscience.com 

Scaffold Q+S Proteome Software Proteomesoftware.c
om 

PEAKS Studio 8.5 Bioinformatics 
Solutions Inc. 

Bioinfor.com 

EthoVision XT Noldus Noldus.com 

 879 

Main Figure Titles and Legends 880 

Figure 1. Augmented local field potential activity in 16pdel syndrome differentiated neuronal culture. 881 

a) Local Field Potential (LFP) summary analyzed by log2 fold change between control and 16pdel patient 882 

differentiated neurons. MEA activity was recorded over 30 min starting in media, followed by physiological and 883 

high potassium chloride (KCl) solution. Data was summarized and pooled from 3 experiments. Control n = 9 884 

(media), n = 17 (Physiological Solution), n = 13 (High KCl Solution). 16pdel n = 35 (media), n = 76 885 
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(Physiological Solution), n = 35 (High KCl Solution). Violin plot group analysis: Control - 16pdel 2-way ANOVA. 886 

*p ≤ 0.05. Technical experimental replicates n = 3.  887 

b) Increased sex specific activity in female 16pdel probands drives overall increased LFPs, compared to 888 

unaffected controls. Media unaffected neurons (Control) male (♂) n = 3, Control female (♀) n = 6,16pdel 889 

neurons (Proband) ♂ n = 21, Proband ♀ n = 14, Physiological Solution Control ♂ n = 7, Control ♀ n = 10, 890 

Proband ♂ n = 38, Proband ♀ n = 38, High KCl Solution Control ♂ n = 6, Control ♀ n = 7, Proband ♂ n = 18, 891 

Proband ♀ n = 17. Violin plot analysis: male vs female T-Test. ****p ≤ 0.0001. 892 

c) Increased sex specific female electrogenic burst frequency analyzed by log2 fold change between 16pdel 893 

male and female Media ♂ n = 21, ♀ n = 14, Physiological Solution ♂ n = 38, ♀ n = 38, High KCl Solution ♂ = 894 

18, ♀ n = 17. Violin plot analysis: male vs female T-Test. *p ≤ 0.05. Technical experimental replicates n = 3. 895 

 896 

Figure 2. Significant lipid changes between control and 16pdel differentiated neurons.  897 

a) Total log2 fold change from normalized peak area of lipid class analysis from untargeted lipidomics. Bolded 898 

and colored indicate statistically significant changes by T-Test, p ≤ 0.05 - 0.0001.  899 

AcCa acyl carnitine, AEA N-arachidonoylethanolamine, Cer ceramide, ChE cholesterol ester, Co coenzyme, 900 

DG diacylglycerol, Hex1Cer hexosylceramide, LPC lysophosphatiylcholine, LPE lysophosphatiylethanolamine, 901 

LPG lysophosphatiylglycerol, MG monoacylglycerol, PA phosphatidic acid, PC phosphatidylcholine, PE 902 

phosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol, PS phosphatidylserine, SM 903 

sphingomyelin, SPH sphingosine,TG triacylglycerol. 904 

b) Total lipid composition analysis from untargeted lipidomics between control and 16pdel neuron. Chain 905 

Length: Small 1-5, Medium 6-12, Long 13-21, Very Long 22+, and Unresolved. 906 

c – f) Selected analysis of lipid species from untargeted lipidomics classes. Lipid Class specified for each 907 

histogram (c - phosphatidylethanolamine, d - ceramide, e - monoacylglycerol, f – triacylglycerol) normalized 908 

peak area between control (grey) and 16pdel (orange). Statistical analysis by 2-Way ANOVA, *p ≤ 0.05 **p ≤ 909 

0.01,***p ≤ 0.001, ****p ≤ 0.0001. Control n = 10, 16pdel n= 69, error bars represent SEM. TG and PE long and 910 

very long chain species not shown as no significant differences were found by ANOVA. Technical experimental 911 

replicates n = 3. 912 

 913 

Figure 3. FAM57B interacts with CerS but does not have CerS activity. 914 

a) CerS2 activity assayed using C24:1-CoA in CerS2 KO HEK293T cells. Statistical analysis by T-test *p ≤ 915 

0.05, **p ≤ 0.01, error bars SEM. Technical experimental replicates n = 3. 916 

b) (Upper) Western blot analysis of total human FAM57B-Flag and CerS2-HA after transfection in HEK293T 917 

cells. Proteins were prepared from HEK293T cells overexpressing the indicated constructs. Anti-HA and anti-918 

Flag are indicated. (Lower) CerS2 activity assayed using C24:1-CoA in HEK293T cells. GAPDH was used as a 919 

loading control. Statistical analysis by T-test *p ≤ 0.05, **p ≤ 0.01, error bars SEM. Technical experimental 920 

replicates n = 3. 921 
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c) (Upper) Western blot analysis of total human FAM57B-Flag, CerS5-HA and CerS6-HA after transfection in 922 

HEK293T cells. Proteins were prepared from cells overexpressing the indicated constructs. Anti-HA and anti-923 

Flag are indicated. (Lower) CerS5 and CerS6 activity was assayed using C16:0-CoA in HEK293T cells. Anti-924 

HA and anti-Flag are indicated. GAPDH was used as a loading control. Technical experimental replicates n = 925 

4. 926 

d) Total cell lysates were prepared from the co-transfected cells with FAM57B-Flag and CerS2, 5 or 6-HA 927 

constructs and solubilized with 1% NP-40. Total lysates (input) or proteins immuno-precipitated with anti-Flag 928 

M2 agarose (IP) were subjected to immunoblotting with anti-HA or anti-Flag antibodies. GAPDH was used as a 929 

loading control. Technical experimental replicates n = 3. 930 

 931 

Figure 4. Significant lipid changes in sphingolipids and glycerolipids between WT and FAM57B mutant 932 

human differentiated SH-SY5Y neuronal cells. 933 

a - c) Total log2 fold change from normalized peak area of lipid class analysis from untargeted lipidomics. a) 934 

FAM57B KO – WT, b) FAM57B HET – WT, c) FAM57B KO – FAM57B HET. Bolded and colored indicate 935 

statistically significant changes by T-Test, p ≤ 0.05 - 0.0001. AcCa acyl carnitine, Cer ceramide, ChE 936 

cholesterol ester, CL cardiolipin, Co coenzyme, DG diacylglycerol, HexCer Hexosylceramide, LPC 937 

lysophosphatiylcholine, LPE lysophosphatiylethanolamine, MG monoacylglycerol, PC phosphatidylcholine, PE 938 

phosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol, PS phosphatidylserine, SM 939 

sphingomyelin, TG triacylglycerol. Technical experimental replicates n = 3. 940 

d – g) Selected analysis of lipid species from untargeted lipidomics classes. Lipid Class specified for each 941 

histogram, normalized peak area between WT (black) FAM57B HET (orange) and FAM57B KO (blue). 942 

Statistical analysis by 2-Way ANOVA, *p ≤ 0.05 **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Color of asterisks 943 

indicate comparison between WT – HET (orange), WT – KO (blue), HET – KO (black). WT n = 3, FAM57B 944 

HET n= 3, FAM57B KO n = 3, error bars represent SEM. Experiment repeated twice, analysis was similar 945 

between two separate runs. 946 

 947 

Figure 5. FAM57B knockout human neurons indicate altered synaptic composition. 948 

a-b) Isolated synaptosome protein abundance changes between a) FAM57B KO relative to WT and b) 949 

FAM57B HET relative to WT (Log2 Fold). Labeled and colored indicating increased (purple) or decreased 950 

(green) abundance. Only the top 20 proteins of statical significance were labeled in c and analyzed in e-g. WT 951 

n = 8, HET n = 10, KO n = 7. Technical experimental replicates n = 3. 952 

c-e) Gene ontology analysis of statistically significant synaptosome isolated proteins (e) in FAM57B KO 953 

relative to WT. e) gene ontology pie graphs of top 20 decreased protein groups of cellular components, 954 

molecular function, protein classes, biological processes and pathways. f) gene ontology figure legend. 955 

g) Analysis of synaptic markers from isolated synaptosomes between all 3 genotypes. Bolded are significantly 956 

decreased protein abundance of synaptic structural and maturation proteins, and vesicle regulation machinery. 957 

Jo
urn

al 
Pre-

pro
of



 

 30 

INA – WT - HET & WT - KO, RAB11B – HET - KO, STXBP1 – WT - HET & WT - KO, YWHAZ – WT - HET & 958 

WT - KO. 2-Way ANOVA, p ≤ 0.05 – 0.0001.  959 

f) Isolated synaptosome lipid abundance between FAM57B KO relative to WT. Bolded text and color (purple 960 

increased and green decreased) indicates statistically significant changes by T-Test, p ≤ 0.05 - 0.01. n = 6 per 961 

genotype, technical experimental replicates n = 2. No statistically significant differences observed when 962 

comparing FAM57B HET to WT, nor FAM57B KO to FAM57B HET.  963 

 964 

Figure 6. Significant lipid changes in ceramides and glycerols between AB and fam57b mut brain 965 

tissue. 966 

a) Total log2 fold change from normalized peak area of lipid class analysis from untargeted lipidomics. Bolded 967 

and colored indicate statistically significant changes by T-Test, p ≤ 0.05 - 0.0001. AcCa acyl carnitine, Cer 968 

ceramide, ChE cholesterol ester, CL cardiolipin, Co coenzyme, DG diacylglycerol, HexCer Hexosylceramide, 969 

LPC lysophosphatiylcholine, LPE lysophosphatiylethanolamine, MG monoacylglycerol, PC 970 

phosphatidylcholine, PE phosphatidylethanolamine, PG phosphatidylglycerol, PI phosphatidylinositol, PS 971 

phosphatidylserine, SM sphingomyelin, TG triacylglycerol. Technical experimental replicates n = 3. 972 

b – g) Selected analysis of lipid species from untargeted lipidomics classes. Lipid Class specified for each 973 

histogram, normalized peak area between AB (grey) and fam57b mut (green). Statistical analysis by 2-Way 974 

ANOVA, *p ≤ 0.05 **p ≤ 0.01,***p ≤ 0.001, ****p ≤ 0.0001. AB n = 3, fam57b mut n= 3, error bars represent 975 

SEM. Experiment repeated twice, analysis was similar between two separate runs. Individual MG species 976 

between fam57b het to AB n.s. Not shown for space: 2-Way ANOVA analysis of TG. Increase in TG 977 

(16:0_16:0_16:1) in fam57b het compared to AB (p ≤ 0.01). 978 

 979 

Figure 7. Loss of fam57b results in altered plasma membrane architecture early in development and 980 

decreased localization of Synaptotagmin family at the synapse later in development. 981 

a) Schematic of Cholera toxin-B-488 (CT-B) injection into hindbrain ventricle of embryo and flat-mounted 982 

midbrain region for imaging at 24 hpf.  983 

b) Representative embryo midbrain imaging and quantification of CT-B labeling of AB compared to fam57b 984 

mut. Punctate CT-B labeling (arrows), actin marker phalloidin indicates labelling of CT-B at the plasma 985 

membrane, merged with DAPI. Quantification of puncta between WT (grey) and fam57b mut (green) CT-B (p ≤ 986 

0.05) T-Test. Scale bar = 5 μm. AB n = 16, fam57b mut n = 18. Error bars SEM, statistical analysis by T-test *p 987 

≤ 0.05. Technical experimental replicates n = 4.  988 

c) Representative embryo midbrain imaging and quantification of duramycin-488 labeling of AB compared to 989 

fam57b mut. Punctate duramycin labeling (arrows), actin marker phalloidin indicates labelling of duramycin at 990 

the plasma membrane, merged with DAPI. Quantification of puncta between WT (grey) and fam57b mut 991 

(green) Duramycin PE staining (p ≤ 0.05) T-Test. Scale bar = 5 μm. AB n = 8, fam57b mut n = 8. Error bars 992 

SEM, statistical analysis by T-test *p ≤ 0.05. Technical experimental replicates n = 3. 993 
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d) Schematic of membrane protein labeling biotinylation assay and processing for MS/MS in 7 dpf larvae 994 

brains.  995 

e) Larvae brain total plasma membrane protein abundance changes between fam57b mut relative to AB (Log2 996 

Fold). Statistically significant p ≤ 0.05 - 0.0001 proteins labelled, indicating increased (purple) or decreased 997 

(green) abundance. Lowest abundance membrane protein Synaptotagmin-1a (red box). n = 3 per genotype. 998 

f) Representative slice of 7 dpf whole larva brain mount with Sytaptotagmin-1a (green), GAD65/67 (red) and 999 

Beta-actin (magenta). Z-stack composite image merged with DAPI. Forebrain and midbrain areas of diffused 1000 

Syt-1 localization (white arrows).  Anatomical differences noted throughout brain, including (1) optic tectum and 1001 

(2) corpus cerebelli (red arrows). Scale bar = 10 μm. Technical experimental replicates n = 2. 1002 

g) Representative 7 dpf whole brain western blot indicate no significant change in total Syt-1a protein levels 1003 

between fam57b mut relative to AB. Zebrafish larvae brains pooled (20 per genotype). Syt-1a protein 1004 

abundance normalized to Beta-Actin loading control, repeated twice. 1005 

h) Larvae brain total isolated synaptosome protein abundance changes between fam57b mut relative to AB 1006 

(Log2 Fold). Statistically significant p ≤ 0.05 - 0.0001 proteins labelled, indicating increased (purple) or 1007 

decreased (green) abundance. Low abundance Synaptotagmin-2a like protein (red box). n = 7 per genotype. 1008 

Technical experimental replicates n = 2. 1009 

i-j) Gene ontology analysis of statistically significant larvae synaptosome isolated proteins (h) in fam57b mut 1010 

relative to AB. i) Gene ontology pie graphs of increased and decreased protein groups of cellular components, 1011 

molecular function, protein classes, biological processes and pathways. j) Gene ontology figure legend. 1012 

k) Analysis of Synaptotagmin family members from larvae isolated synaptosomes. Significantly decreased 1013 

protein abundance of Syt1a and Syt2a by 2-Way ANOVA, **p ≤ 0.01, ****p ≤ 0.0001. 1014 

l) Analysis of Synaptotagmin family members from differentiated SH-SY5Y isolated synaptosomes between all 1015 

3 genotypes. Significantly decreased protein abundance of elongated ESYT1 by 2-Way ANOVA, *p ≤ 0.05, **p 1016 

≤ 0.01. Error bars SEM. 1017 

m) Analysis of synaptic markers from larvae isolated synaptosomes. Significantly decreased protein 1018 

abundance (bolded) of vesicle regulation machinery and glutamate receptor activity by 2-Way ANOVA, **p ≤ 1019 

0.01, ****p ≤ 0.0001. 1020 

 1021 

Figure 8. Decreased spontaneous brain activity and diminished behavioral response after stimuli 1022 

presentation in fam57b mutants. 1023 

a-b) Local field potential (LFP) recordings in unanesthetized live larvae at 7dpf. Brain localized LFP recordings 1024 

were pooled for each larva. a) Decreased average number, mean rate and inter-LFP interval (ILI) coefficient of 1025 

variation of LFP in fam57b mut compared to AB (orange). No electrographic burst activity was identified in 1026 

fam57b mut at standard 5 LFPs/100 ms. Decreased electrographic burst parameters, including duration, 1027 

number of LFPs per burst, frequency and percentage at 3 LFPs/200ms (blue). b) Decreased average 1028 

electrographic burst network activity and frequency, defined as a minimum or 3 electrographic bursts between 1029 
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2 electrodes simultaneously, in fam57b mut compared to AB (grey). AB n = 21, fam57b mut n = 24 over 6 1030 

experiments. Statistical significance by unpaired T-test, *p ≤0.05, **p ≤ 0.01,*** p ≤ 0.001,**** p ≤ 0.0001. 1031 

Technical experimental replicates n = 7. 1032 

c) Representative LFP waveform in brain region, indicating smaller relative waveform in fam57b mut compared 1033 

to AB. 1034 

d) Representative LFP raster plot over experimental time frame, indicating less overall activity in fam57b mut 1035 

compared to AB. 1036 

e) Representative image of 7 dpf immersed in cooled agarose in contact with electrodes on 12-well CytoView 1037 

MEA plate. 1038 

f) Startle response behavioral assay. Light source was removed for 5 secs at 10 min intervals. Mean distance 1039 

reported from tracked movement during 70 min assay. Decreased light startle response identified in fam57b 1040 

mut compared to AB. Statistical analysis of each startle response by T-test **p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 1041 

0.0001. Error bars SEM. No overall significant change in movement outside of the startle identified. AB n = 1042 

125, fam57b mut n = 33 over 5 experiments. 1043 

g) Seizure response behavioral assay. Normalized (baseline recording subtracted) mean distance from tracked 1044 

movement after absence or presence of pentylenetetrazol (PTZ) 0.5 mM and 5 mM. Significantly increased 1045 

seizure-induced movement observed at 5mM in AB, while increased movement observed at 0.5 and 5 mM 1046 

PTZ in fam57b mut. Diminished overall seizure-induced movement at 5 mM in fam57b mut compared to AB. 1047 

Relative fold change compared to absence of PTZ indicated below histogram. Statistical analysis of each 1048 

condition by T-test *p≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001. Error bars SEM. AB n = 166 (0 mM), 92 (0.5 mM), 1049 

150 (5 mM), fam57b mut n = 91 (0 mM), 70 (0.5 mM), 56 (5mM) over 6 experiments. 1050 

h) Model proposing role of Fam57b activity in the brain. Loss of function in fam57b mutants indicate significant 1051 

changes in plasma membrane lipid groups alter architecture of plasma membrane early the developing brain. 1052 

Architectural changes indicated by increased lipid raft abundance and aggregation. Altered plasma membrane 1053 

homeostasis results in mis-localization of synaptic proteins, including synaptotagmins, after maturation. 1054 

Decreased spontaneous brain and network activity suggests diminished synaptic function and developed 1055 

circuits. As evidence has suggested spontaneous network activity shapes synaptic development, this cycles 1056 

back to declined neuronal maturation and circuity. Molecular changes to synaptic function and decreased 1057 

spontaneous brain activity translate to altered behavioral response after stimuli presentation. 1058 

 1059 

Supplementary Tables 1060 

Table S1 - iPSC Neuron Lipidomics. Related to figure 2. 1061 

Table S2 - SH-SY5Y Lipidomics. Related to figure 4. 1062 

Table S3 - SH-SY5Y Synaptosome MSMS. Related to figure 5. 1063 

Table S4 - SH-SY5Y Synaptosome Lipidomics. Related to figure 5. 1064 

Table S5 - Zebrafish Larvae Brain Lipidomics. Related to figure 7. 1065 
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Table S6 - Zebrafish Larvae Brain Biotinylation MSMS. Related to figure 7. 1066 

Table S7 - Zebrafish Larvae Brain Synaptosome MSMS. Related to figure 7. 1067 

Table S8 - Zebrafish Larvae Head and Body Measurements. Related to figure 8. 1068 

Table S9 - Zebrafish Larvae Light Startle Response Data. Related to figure 8. 1069 

Table S10 - Zebrafish Larvae Seizure Assay Data. Related to figure 8. 1070 
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DMEM Corning MT15017CV 

Polyethylenimine Sigma 08719 

Jo
urn

al 
Pre-

pro
of



Protease Inhibitor Cocktail Sigma 200-664-3 

NBD-spinganine Avanti Polar 810206P 

BSA -FA Sigma 10775835001 

16.1 Coenzyme A Avanti Polar 870743 

24.1 Coenzyme 1 Avanti Polar 870725 
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Duramycin-Cy3 Molecular Targeting D-1006 

SHIELD LifeCanvas Tech https://lifecanvastech
.com/products/shield 

PFA EMS 50-970-495 

RIPA Thermo 89900 

SYN-Per Thermo 87793 

Critical commercial assays 
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Figure 1. Augmented local field potential activity in 16pdel syndrome differentiated neuronal culture. 
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Figure 2. Significant lipid changes between control and 16pdel differentiated neurons.  
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Figure 3. FAM57B interacts with CerS but does not have CerS activity. 
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Figure 4. Significant lipid changes in sphingolipids and glycerolipids between WT and FAM57B mutant 
human differentiated SH-SY5Y neuronal cells. 
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Figure 5. FAM57B knockout human neurons indicate altered synaptic composition. 
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Figure 6. Significant lipid changes in ceramides and glycerols between AB and fam57b mut brain 
tissue. 
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Figure 7. Loss of fam57b results in altered plasma membrane architecture early in development and 
decreased localization of Synaptotagmin family at the synapse later in development. 
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Figure 8. Decreased spontaneous brain activity and diminished behavioral response after stimuli 
presentation in fam57b mutants. 
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Highlights  
 

 Augmented LFP activity and sex-specific differences in 16pdel neurons. 

 16pdel neuronal lipidome indicated altered ceramide related species. 

 FAM57B is a ceramide synthase modulator essential for lipid regulation in the brain.  

 FAM57B functions in synaptogenesis, synapse architecture and composition.  
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