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ABSTRACT	

BACKGROUND (ZHANG et al. Neuron 2013)	

PURE iN CELLS HAVE SYNAPSES	

TIME-POINTS FOR SAMPLE COLLECTION	

SILAC-MASS SPECTROMETRY (MS) OF PURE iN	

MS vs. RNAseq	

H1-CAS9 ESC LINE	

H1-CAS9 iN CELLS 	

CONCLUSIONS	

Our lab recently reported that a single transcription factor 
(Neurogenin-2) can drive the differentiation of human embryonic stem 
cells (ESCs) into functional induced neurons (iNs) over several weeks. 
These iNs express synaptic markers at both transcript and protein 
levels and exhibit electrophysiological properties of excitatory neurons. 
This reduced system presents many opportunities, but in order to be 
useful for genetic screens and manipulations, we must understand the 
transcriptomic and proteomic profiles of these neurons in both immature 
and mature states. We developed strategies to culture pure iNs that 
were functionally equivalent to previous iNs grown on mouse glial cells 
in order to label proteins quantitatively using stable isotope labeling of 
amino acids (SILAC) and conduct RNAseq.  
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We used “heavy” Lys and Arg: 
 
 13C6,15N2-labeled lysine 13C6,15N4-labeled arginine 

Arg-0 Arg-10 

10 Da 

High incorporation ratio  
(turnover, new synthesis): 
Light = 1 
Heavy = 10 
Log2(1/10) = -3.3 
 
Low incorporation ratio  
(stable, not synthesized): 
Light = 10 
Heavy = 1 
Log2(10) = 3.3 

B. d6-24, whole 
D. d6-24, nuclear 
removed 

A. d12-24, whole 
C. d12-24, nuclear  
removed // “synapse” 

Nuclear 
Removed 

Whole 

Whole 12-24 

nuc. rem. 12-24 

Whole 6-24 

nuc. rem. 6-24 

SYT1 
MAP2 
STXBP1  
GDI1 

CASK      ESYT1 

SYB2 

SNAP25  
 

GPHN 
SNCA 
SYP 
SYT11 
PPFIA3 

NRXN1  
 

APOE 

PCLO 

APP 

L1CAM 
TUBB3 
MAPT 

N
or

m
al

iz
ed

 tr
an

sc
rip

ts
 (i

N
 a

vg
/H

1 
av

g)
 

SILAC ratio 

High protein 
Low transcript 

Low protein 
Low transcript 

High protein 
High transcript 

Low protein 
High transcript 

This set of data acts as an important resource for subsequent 
investigations of human neurons. Pure iN, to first approximation, are 
comparable to iN on glia, and critically enable massive unbiased 
developmental characterization at the protein and transcript levels. 
Furthermore, the H1-Cas9 ESC line is robust and can be differentiated into 
iN (whereby Cas9 expression is shut off) and used for genetic screens. 
 
We have since filtered the MS and RNAseq data sets for interesting 
candidates of little to unknown function and begun a screen to identify 
molecules that may be involved in synapse formation. Interestingly, a 
number of genes show phenotypes in immunofluorescence and multi-
electrode array assays.   
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Cas9 expression shuts off after Ngn2 differentiation 
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