High-throughput assay of seizurogenic activity using multiwell microelectrode array technology
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. Introduction

The lack of advancement in anti-epileptic drugs (AEDs) over the last 30 years, along with the
continued need for improved proconvulsant screening in drug safety, motivates the need for
new assays of seizurogenic neural activity.

Here, we present the development of an in vitro assay of seizurogenic activity based upon the
Axion BioSystems Maestro multiwell MEA system, using previously published metrics for
guantifying bursting and synchrony within networks of cryopreserved cortical neurons.

Our results support the use of multiwell MEA technology for the high-throughput evaluation of
complex neuronal networks in vitro to inform the development of AEDs, while also quantifying

the proconvulsant risk of candidate pharmaceuticals in a pre-clinical setting.
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I. Methods

Cell Source — Rat Cortical Neurons (QBM Cell Science)
Cell Density — 8x10* to 1.6x10° per well

Surface Coating — Polyethylenimine, Laminin

MEAs — 12-, 48- and 96-well (Axion BioSystems)

Settings — Signals acquired from 200-3000Hz, Spike detected at 6 x Std. Dev. of noise

oL Inclusion Criteria — At least 5 spikes recorded/minute for a given electrode (McConnell et al, 2012).
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Analysis — MatLAB, Axion BioSystems Neural Metric Tool

Compound Sensitivity — Compounds were prepared in DMSO such that the final [vehicle] <= 0.1%
Compound Dosing — Compounds were dosed in both single dose and sequential dose formats

Electrical Stimulation —a £t800mV, 1ms duration, biphasic voltage stimulus was applied through 1
electrode per well across the MEA plate at 0.1-0.2 Hz.

Optogenetics — ChR2 transfected neurons were electrically stimulated as above, then optically stimulated
using blue light (475nm) (all at 0.1 Hz). Neurons were then dosed with 100uM Picrotoxin and the
stimulations were repeated.

Burst Frequency Single Channel Burst - collection of spikes occurring within a short time window on a single channel in the

Single Channel | { MEA. Bursts were detected using an inter-spike interval threshold method (Chiappalone et al, 2005).

Network Burst - collection of spikes occurring within a short time window across the entire network. Bursts
were detected using an inter-spike interval threshold method (Bakkum et al, 2013).
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describe the fundamental bursting behavior.

Burst Rhythmicity - a metric describing the consistency of the burst frequency, computed as the coefficient
of variation of the inter-burst intervals. Bursts that occur very regularly (i.e. every 5 seconds) have a low value
for this metric.

:

Burst Duration Regularity - a metric describing the consistency of the burst duration, computed as the
normalized interquartile range of the burst duration.
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B Burst Frequency/Duration - the rate of occurrence and duration of bursts are two examples of metrics that
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Burst Duration Inter-Burst Synchrony - a collection of spikes occurring simultaneously across multiple neurons. Multiple metrics were
Interval derived from the cross-correlogram to describe synchrony.

Ill. Cell Density Variation
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V. Neural Metrics
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Picrotoxin consistently prolonged the duration of network bursts
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Network bursts became more “rhythmic” (lower 1Bl CoV)
as the bicuculline concentration increased
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4-AP inhibits repolarization by blocking potassium channels, leading to
additional “rebound” bursts and a greater network burst frequency
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Carbamazepine suppressed the “seizure-like” activity by reducing
the network bursting frequency
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Baclofen, a GABA-B receptor agonist, significantly decreased mean firing rate
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V. Neural Metrics Continued

Network burst and synchrony metrics are
Picrotoxin correlated within and across compounds.
Network burst duration and frequency, which
describe the burst morphology, are inversely
Bicuculline correlated, whereas burst rhythmicity and
regularity, which describe burst organization,
are correlated. Also, 4-AP displays a
4-AP markedly different phenotype than picrotoxin
and bicuculline, likely attributed to its distinct
mechanism of action. The anti-epileptic
drugs (Not Shown) also exhibit a unique
phenotype, characterized by a reduction in
overall firing activity and network bursts.

Notably, mean firing rate did not change
. >20% Increase . 520% Decrease significantly for the pro-convulsant
compounds.
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V1. Electrical Stimulation
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Electrical stimulation increases the reliability of the assay. Electrical stimulation was used to “pace” the network bursts across wells,
leading to greater consistency across wells in the baseline and dosed (picrotoxin) condition, and increased sensitivity overall.

VIlI. Conclusion

The network activity of dissociated cortical cultures, quantified through burst and synchrony
metrics, was extremely sensitive to known pro-convulsant compounds, and electrical stimulation
further increased the reliability across wells. These results support the use of multiwell MEA
technology for the high-throughput evaluation of complex neuronal networks in vitro to evaluate
the pro-convulsant risk of candidate compounds.
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