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Patient-derived hiPSC neurons with heterozygous CNTNAP2
deletions display altered neuronal gene expression and network
activity
Erin Flaherty1,2, Rania M. Deranieh3, Elena Artimovich3, Inkyu S. Lee1,2, Arthur J. Siegel4, Deborah L. Levy5, Michael W. Nestor3 and
Kristen J. Brennand 1,2,6

Variants in CNTNAP2, a member of the neurexin family of genes that function as cell adhesion molecules, have been associated with
multiple neuropsychiatric conditions such as schizophrenia, autism spectrum disorder and intellectual disability; animal studies
indicate a role for CNTNAP2 in axon guidance, dendritic arborization and synaptogenesis. We previously reprogrammed fibroblasts
from a family trio consisting of two carriers of heterozygous intragenic CNTNAP2 deletions into human induced pluripotent stem
cells (hiPSCs) and described decreased migration in the neural progenitor cells (NPCs) differentiated from the affected CNTNAP2
carrier in this trio. Here, we report the effect of this heterozygous intragenic deletion in CNTNAP2 on global gene expression and
neuronal activity in the same cohort. Our findings suggest that heterozygous CNTNAP2 deletions affect genes involved in neuronal
development and neuronal activity; however, these data reflect only one family trio and therefore more deletion carriers, with a
variety of genetic backgrounds, will be needed to understand the molecular mechanisms underlying CNTNAP2 deletions.
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SHORT REPORT
The shared genetic architecture underlying neuropsychiatric
disorders implicates common molecular mechanisms.1 For exam-
ple, while homozygous null mutations in CNTNAP2 lead to cortical
dysplasia-focal epilepsy syndrome,2, 3 heterozygous intragenic
deletions are associated with schizophrenia, intellectual disability,
language deficits, seizures, and autism traits.4 Critically, CNTNAP2
variants are not completely penetrant.2, 5 Animal studies indicate a
role for CNTNAP2 in axon guidance, dendritic arborization, and
synaptogenesis.6–8

We obtained fibroblast samples from a family trio with two
carriers of heterozygous intragenic CNTNAP2 deletions, one
affected and one unaffected, and an unaffected non-carrier
control (Table 1). The CNTNAP2 carriers display discordant clinical
phenotypes; the daughter (DL7078) presented with schizo-
affective disorder (depressed subtype) while the father (DL8735)
was neurotypical.9 We previously used sendai viral vectors to
reprogram fibroblasts from this trio into hiPSCs that were then
differentiated via dual-SMAD induction into NPCs and neurons.
We characterized decreased migration in NPCs and allele-biased
expression of the mutant CNTNAP2 transcript by qPCR in neurons
from the affected CNTNAP2 carrier in this trio.9 Here, we report the
effect of this heterozygous intragenic deletion in CNTNAP2 on
global gene expression and neuronal activity in this same cohort.
CNTNAP2 is highly expressed in Ngn2-induced neurons, a

population of nearly pure excitatory neurons,10 relative to hiPSC-
derived NPCs11 and hiPSC-astrocytes12 (qPCR FC = 82.5, p < 0.0001,
ANOVA with Tukey’s Post-Hoc) (Fig. 1a). RNA was harvested after
21 days of Ngn2-induction. The New York Genome Center

prepared RNAseq libraries using the Kapa Total 350 bp kit,
followed by 2 × 125 bp Illumina RNA sequencing to a read depth
of 40 M reads per sample on the HiSeq 2500.
We queried the expression of CNTNAP2 in Ngn2-induced

neurons from each member of this family trio, hypothesizing that
heterozygous intragenic deletions may affect the expression of
CNTNAP2. Surprisingly, overall CNTNAP2 expression was increased
in the CNTNAP2 deletion carriers compared with the non-carrier
mother (log2FC = 1.24, padj = 0.003) (Fig. 1b).
Differential expression analysis was performed using DESeq213

and the top 500 differentially expressed genes were used to
perform gene ontology using DAVID14, 15 (SI Table 1). The most
significant subset of genes mapped to terms relating to DNA
binding and central nervous system (CNS) development (FC = 1.8,
p < 0.00001 and FC = 1.9, p = 0.0003) (Fig. 1c; SI Table 2). Within the
gene subset involved in CNS development, there are some
interesting candidate genes such as CNTN6 and CNTN4, which are
involved in regulating cell surface interactions during nervous
system development and are also thought to be important in
synaptogenesis (SI Table 3).
Given the differences in gene expression of critical neuronal

and synaptic genes, we applied an Axion multi-electrode array
(MEA) (see similar applications to Amyotrophic Lateral Sclerosis16

and Parkinson’s disease17) to record population-wide neuronal
activity under conditions similar to those used in our RNAseq
analyzes. 21-day-old Ngn2-induced neurons from both the
affected (daughter, DL7078) and unaffected (father, DL8735)
CNTNAP2 deletion carriers showed significantly increased sponta-
neous network level activity (an increase of 210 and 253%,
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respectively) relative to the non-carrier (mother, DL5535) and an
unaffected unrelated control (female, NSB3113) (N = 12 wells/
condition; p < 0.001, ANOVA with Tukey’s Post-Hoc) (Fig. 2a). These
results were confirmed in hiPSC-derived forebrain neuron
populations, which are comprised of a mixture of mature and
immature excitatory neurons, inhibitory neurons and astrocytes,
with the majority of cells presumed to be excitatory neurons.18, 19

Here, NPCs were seeded (65,000 cells/mL) onto 12-well MEA plates
and differentiated for 28 days; hiPSC-derived neurons from the
affected and unaffected CNTNAP2 deletion carriers showed
significantly increased spontaneous population wide neuronal
activity relative to the non-carrier mother (increases of 344 and
182% relative to the non-carrier mother; N = 12 wells/condition; p
< 0.001, ANOVA with Tukey’s Post-Hoc) (Fig. 2a, b). All measure-
ments were performed as biological triplicates for each hiPSC line
and averaged across experiments. In both populations, neurons
robustly stained for neuronal markers βIII-TUBULIN, NeuN, and
MAP2 (representative images in Fig. 2c).

Our genetic analyzes and functional assays together show that
heterozygous deletion of CNTNAP2 may impact neuronal activity.
The significant increase in spontaneous spiking activity in the
unaffected carrier father and carrier daughter may underlie
aspects of the aberrant behavior displayed by the proband.
Additionally, this alteration in spike activity may in part explain
observations of disrupted neuronal synchrony in CNTNAP2-null
mice.6

Here we demonstrated that hiPSC-derived neurons from
individuals with heterozygous intragenic deletions in CNTNAP2
display differential expression of genes involved in synaptic
transmission and altered neuronal activity, consistent with
reports of disrupted cortical neuronal activity in CNTNAP2-null
mice,6 and potentially independent of clinical outcome. Our report
reflects results from just one family trio; a greater
variety of disease-associated CNTNAP2 mutations, on an array of
genetic backgrounds, will be needed to understand the full
breath of genotype-phenotype relationships with respect to
CNTNAP2.18, 20–22

Table 1. Available clinical information on hiPSC donors

Patient ID Source hiPSC Line Family Sex Dx Age of Onset IQ Clozapine Response Family History

DL7078 McLeans 7078 hiPSC#B Proband F SA 18.9 100 Y –

DL8735 McLeans 8735 hiPSC#H Father M Control n/a 120 n/a SA

DL5535 McLeans 5535 hiPSC#2 Mother F Control n/a 95 n/a SA

NSB3113 NIH 3113 hiPSC#1 Non-relative F Control n/a 123 n/a n/a

Fig. 1 CNTNAP2 expression in excitatory neurons induced from family trio. a By qPCR, CNTNAP2 expression is significantly increased in Ngn2-
induced neurons compared to neural progenitor cells (NPCs) and hiPSC-derived astrocytes. Data reflects biological triplicate samples from one
hiPSC line derived from each of three healthy controls (mean +/− s.e.m). b RNA sequencing data shows total CNTNAP2 expression is increased
in deletion carriers compared with non-carrier control (mean +/− s.e.m). c Genes differentially expressed in CNTNAP2 deletion carriers are
enriched for genes involved in DNA binding and central nervous system development. * p< 0.05, *** p< 0.001
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Ethical approval
The methods were performed in accordance with relevant
guidelines and regulations and approved by the McLean Hospital
Institutional Review Board. Participants were subject to informed
and written consent.

Data availability
All case and control hiPSCs, which have been mycoplasma tested,
will be deposited with the NIMH Center For Collaborative Studies
Of Mental Disorders At RUCDR. RNAseq data for CNTNAP2 carrier
and non-carrier neurons (GEO GSE102838) have been deposited at
the GeneExpression Omnibus (GEO) repository. Antibodies used in
this study are: βIII-TUBULIN (1:500; Chicken; Biolegend; 801201),
NeuN(1:100; Rabbit; Abcam; ab104225), MAP2 (1:500; Chicken;
Abcam; ab5392).
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